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Abstract

Although correspondence between the poles of a continuous-time and sampled-data system with a piecewise constant input is
simple and desirable from the stability viewpoint, the relationship between zeros is intricate. Inversion of a sampled-data system
is mostly unstable irrespective of the stability of the continuous-time counterpart. This makes it difficult to apply inversion-
based control techniques such as perfect tracking, transient response shaping or iterative learning control to sampled-data
systems. Although recently developed noncausal inversion techniques help us to circumvent unboundedness of the inversion
caused by unstable zeros, whether the inversion of sampled-data systems approximates the continuous-time counterpart or
not as the sample period is shortened is still to be determined. This article gives a positive conclusion to this problem.
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1 Introduction

In recent times, control systems have typically been in-
stalled in digital devices that include samplers and zero-
order holds, which convert continuous-time signals into
discrete-time signals and vice versa. A zero-order hold
generates piecewise constant functions that can approx-
imate any uniformly continuous function u(t) defined on
the infinite time horizon, i.e. ‖u(bt/τcτ) − u(t)‖∞ → 0
as the sample period τ → 0 where ‖x(t)‖∞ =
sup{|x(t)|; t ∈ (−∞, +∞)} and bt/τc denotes the maxi-
mum integer that does not exceed t/τ . This implies that∥∥∥
∫ +∞
−∞ g(t− σ)u(bσ/τcτ)dσ − ∫ +∞

−∞ g(t− σ)u(σ)dσ
∥∥∥
∞
→

0 for any stable linear system g, i.e. the output of stable
continuous-time systems with a piecewise constant in-
put u(bt/τcτ) approximates the output of the same sys-
tems with a continuous input u(t) as the sample period
is shortened. This fact encourages us to replace analog
controllers with digital controllers with a sufficiently
small sample time. In contrast to the earlier mentioned
convenient properties, it is recognized that there is no
simple correspondence between inversion of the system
with continuous input and piecewise constant input.
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This fact is highlighted by investigations from the view-
point of transfer functions. Consider a linear causal
system with an impulse response g(t). Then, the trans-
fer function is G(s) = L[

∫ +∞
−∞ g(t − σ)u(σ)dσ]/L[u(t)]

where L denotes the one-sided Laplace transform. As-
sume that the transfer function is expressed as

G(s) =
K(s− γ1)(s− γ2) · · · (s− γm)
(s− p1)(s− p2) · · · (s− pn)

(1)

or G(s) = c(sI − A)−1b, where (A, b, c) is a state space
representation. Then, the discrete-time transfer function
of the system with piecewise constant inputs u(bσ/τcτ)
on the sample time t = kτ (k = 0,±1, · · · ) is Hτ (z) =
Z[

∫ +∞
−∞ g(kτ − σ)u(bσ/τcτ)dσ]/Z[u(kτ)]; equivalently,

Hτ (z) = Z[L−1[G(s)L[u(bt/τcτ)]](kτ)]/Z[u(kτ)],
which is expressed as

Hτ (z) =
cbτ (z − q1(τ)) · · · (z − qn−1(τ))

(z − exp(p1τ)) · · · (z − exp(pnτ))
(2)

or Hτ (z) = c(zI − Aτ )−1bτ , where Z is the one-sided
z-transform, Aτ = exp(Aτ) and bτ =

∫ τ

0
exp(At)bdt.

Although correspondence between the poles of G(s) and
Hτ (z) is simple and desirable from the stability view-
point, the relationship between zeros is intricate. It is
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Table 1
Zeros of Euler–Frobenius polynomial Bn−m(z)

n−m zeros

2 −1

3 −2−√3, 1/(−2−√3)

4 −5− 2
√

6, −1, 1/(−5− 2
√

6)

5 λ51, λ52, 1/λ52, 1/λ51 (λ51 ≈ −23, λ52 ≈ −2.3)

6 λ61, λ62, −1, 1/λ62,1/λ61 (λ61 ≈ −51, λ62 ≈ −4.5)

...
...

odd λi−11, · · · , λi−1(i−2)/2, 1/λi−1(i−2)/2, · · · , 1/λi−11

i− 1 (λi−11 < · · · < λi−1(i−2)/2 < −1)

even λi1, · · · , λi(i−2)/2,−1, 1/λi(i−2)/2, · · · , 1/λi1

i (λi1 < · · · < λi(i−2)/2 < −1)

known that the zeros of Hτ (z) have the following asymp-
totic properties in terms of the sample period τ [1,7]:
qi(τ) = 1 + γiτ + O(τ2)(i = 1, · · · ,m) and qi(τ) →
zeros of Bn−m(z) (i = m + 1, · · · , n − 1) as τ → 0,
where Bn−m(z) is the Euler–Frobenius polynomial, the
zeros of which are located on the negative real axis sym-
metrically with respect to −1 (Table 1)[4,19]. This im-
plies that inversion of the discrete-time system 1/Hτ (z)
with a small sample period is mostly unstable even if the
continuous-time counterpart 1/G(s) is stable.

On the other hand, system inversion plays crucial roles
in many control applications such as perfect tracking,
transient response shaping, disturbance attenuation,
and noise cancellation. The aforementioned fact makes
it difficult to apply inversion-based control techniques
developed for continuous-time systems to sampled-data
systems with piecewise constant inputs. For example,
consider a shaping transient response of G(s). Then,
as long as the zeros of G(s) are stable, one can em-
ploy M(s)/G(s) as a prefilter of G(s), where M(s) is a
model that has a desired response. However, it is not
necessarily possible to apply a corresponding approach
directly to the case of piecewise constant inputs because
the discrete-time prefilter Nτ (z)/Hτ (z) is mostly un-
stable; here, Nτ (z) is the discrete-time counterpart of
M(s). Nonetheless, one can avoid unboundedness of the
prefilter by introducing a discrete-time version of the
so-called stable inversion technique, which is a method
to apply anticausal convolution to antistable parts of
the inverse system and generate bounded outputs[3,9].
Still, even though one circumvents the unboundedness
due to unstable zeros of Hτ (z), whether the discrete-
time prefilter Nτ (z)/Hτ (z) can be substituted for the
continuous-time prefilter M(s)/G(s) is still a question.
Recall that Hτ (z) approximates G(s) for uniformly con-
tinuous functions u(t). In such a case, whether 1/Hτ (z)
approximates 1/G(s) or not must be determined. In this
article, the author presents an affirmative conclusion to
this problem.

This article is organized as follows: Section 2 defines non-
causal stable inversion with the two-sided Laplace trans-
form and z-transform and formulates the main problem
with illustrative numerical examples; Section 3 demon-
strates the main results on an approximation in the non-
causal framework; and Section 4 concludes the work.

2 Noncausal inversion and formulation of the
approximation problem

Since feedback control is essentially causal, the one-sided
Laplace transforms and the one-sided z-transforms have
been widely used as mathematical tools to analyze and
design linear feedback controllers. In this framework,
transfer functions with unstable poles that are located
in the right half plane for continuous-time systems or
outside the unit circle for discrete-time systems corre-
spond to diverging signals. This implies that the inverse
of systems with unstable zeros is of no practical use.
However, feedforward control is not necessarily causal in
applications such as perfect tracking, transient response
shaping or iterative learning control. Noncausal feedfor-
ward control has been proposed to achieve better track-
ing than that given by causal controllers [8–11]. It is
known that noncausality enlarges the application scope
of iterative learning control[12,17,18]. In this work, the
author introduces the two-sided Laplace transform and
the z-transform as mathematical tools to analyze non-
causal inversion.

The two-sided Laplace transform of a function f(t)
where t ∈ (−∞, +∞) is defined as L[f(t)](s) = F (s) =∫ +∞
−∞ e−stf(t)dt, which is an analytic function of s ∈ C

in the vertical strip area γ1 < Re(s) < γ2[16]. Let α
be a real number satisfying γ1 < α < γ2. The inverse
Laplace transform is then expressed by

L−1[F (s)](t) = f(t) =
1

2πj

∫ α+j∞

α−j∞
estF (s)ds

=

{∑
Re(pn)<α Res(estF (s), pn) t ≥ 0∑
Re(pm)>α Res(−estF (s), pm) t < 0

(3)

where {pn} and {pm} are the sets of poles of F (s).
For example, consider a bounded function f(t) defied as
f(t) = e−t for t ≥ 0 and f(t) = e2t for t < 0. Then, we
have F (s) = 1/(s + 1) + 1/(2− s), which is analytic on
{s;−1 < Re(s) < 2}.

The two-sided z-transform of a discrete-time function
h(k) where k ∈ Z is defined as Z[h(k)](z) = H(z) =∑+∞

k=−∞ h(k)z−k, which is an analytic function of z ∈ C
in the annular domain r0 < |z| < R0. Let α be a positive
real number satisfying r0 < α < R0. Then, the inverse
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z-transform is expressed by

Z−1[H(z)](k) = h(k) =
1

2πj

∮

|z|=α

zkH(z)
dz

z

=

{∑
|pn|<α Res(zk−1H(z), pn) k ≤ 0∑
|pm|>α Res(−zk−1H(z), pm) k < 0

(4)

For example, consider a series {h(k); k ∈ Z} defined
as h(k) = 1/2k for k ≥ 0 and h(k) = 3k for k < 0.
Then, H(z) = 2z/(2z − 1) + z/(3− z) which is analytic
1/2 < |z| < 3.

Consider again the linear causal systems G(s) and
Hτ (z), which are assumed to be stable. It should be
noted that these transfer functions are unchanged
although they are defined by the two-sided trans-
forms. Consider an input function u(t) that achieves
perfect tracking of a desired trajectory yd(t), i.e.
L[yd(t)] = G(s)L[u(t)]. Then, u(t) is expressed as

u(t) = L−1[1/G(s)L[yd(t)]](t) (5)

If 1/G(s) has poles in the right half plane where it is as-
sumed that α = 0 in (3), the function (5) varies depend-
ing on whether the transform is one-sided or two-sided;
for the latter case, the convolution of (5) is noncausal
with respect to yd(t); the mapping from yd to u is equiv-
alent to the stable inversion that has been proposed in
terms of the state space representation [9]. Next, con-
sider an input sequence {ū(k); k ∈ Z} that generates a
piecewise constant input ū(bt/τc) that makes the output
equal to the desired trajectory at the sample time t = kτ ;
in other words, yd(kτ) = L−1[G(s)L[ū(bt/τc]](kτ), and
equivalently, Z[yd(kτ)] = Hτ (z)Z[ū(k)]. Then, ū(k) is
expressed as

ū(k) = Z−1[1/Hτ (z)Z[yd(kτ)]](k) (6)

This is noncausal convolution if the transform is two-
sided and 1/Hτ (z) has poles outside the unit circle where
it is assumed that α = 1 in (4).

Example 1 Consider G(s) = 100(s+5)
(s+1)(s+2)(s+3)(s+4) .

Then,

Hτ =
1.1151(z + 1.979)(z + 0.1415)(z − 0.08225)

(z − 0.6065)(z − 0.3679)(z − 0.2231)(z − 0.1353)
(7)

Hτ =
0.19036(z + 2.723)(z + 0.1961)(z − 0.2865)

(z − 0.7788)(z − 0.6065)(z − 0.4724)(z − 0.3679)
(8)

for τ = 0.5 or 0.25, respectively. As a desired trajectory,
we consider a function defined as yd(t) = f((t− 5)2) for
t ∈ (4, 6) and yd(t) = 0 for t ∈ [0, 4] or [6, 10], where
f(x) = −x5 +5x4−10x3 +10x2−5x+1. The inversions
(6) for causal and noncausal cases are compared.Since

transfer functions (7) and (8) have a zero outside the
unit circle, the convolution defined by (6) is causal or
noncausal depending on whether 1/Hτ (z) is considered
as a function defined with the one-sided or two-sided z-
transform, respectively.

Figure 1 shows the results in the case of a causal in-
version or one-sided z-transform with the sample period
τ = 0.5; the lower plot presents piecewise constant input
u(t) = ū(bt/τc) obtained by (6) as the solid line; the up-
per plot presents response of G(s) for this piecewise con-
stant input, i.e. y(t) = L−1[G(s)L[ū(bt/τc)]](t) as the
solid line and the desired trajectory yd(t) as the dashed
line. Obviously, the inversion 1/Hτ (z) as a discrete-time
causal prefilter is unacceptable for practical applications
because of its unboundedness on the infinite time horizon.
However, this example shows that the inversion 1/Hτ (z)
is still unacceptable when it is used on the short time in-
terval. It should be noted that although the desired tra-
jectory yd(t) is recovered at the sample time t = kτ , i.e.
y(kτ) = yd(kτ), the output y(t) on the inter-sample time
is oscillating and far from the desired trajectory yd(t).
This phenomenon is derived from the input u(t) that in-
cludes diverging oscillation caused by the unstable zero
of (7). This result conclusively shows that the inversion
1/Hτ (z) as a discrete-time causal prefilter achieves per-
fect tracking only at the sample time but never at the
inter-sample time.

Figure 2 shows the results in the case of a noncausal
inversion or two-sided z-transform with τ = 0.5 or 0.25;
the lower and upper plots present the results similarly
except that Z is the two-sided z-transform. The plots
show that the desired trajectory yd(t) is recovered not only
at the sample time but also approximately at the inter-
sample time.

Remark 2 In the case of the two-sided z-transform, the
calculation of the convolution (6) requires a summation
from −∞ to +∞. However, since Z−1[1/Hτ (z)](k) → 0
and yd(kτ) → 0 as k → ±∞, the infinite convolution
can be approximated with the finite one for a sufficiently
long time interval; this was [0, 10] in Example 1.

In Fig. 2, it is observed that the output y(t) ap-
pears to approach the desired trajectory yd(t) uni-
formly as the sample period τ tends to 0. Note
that yd(t) = L−1[G(s)/G(s)L[yd(t)]](t). Then, one
conjectures that the piecewise constant function
u(t) = ū(bt/τc) defined by the two-sided z-transform
and (6) approaches the input function (5) or, in other
words, 1/Hτ (z) approximates 1/G(s) in the noncausal
framework. Since 1/Hτ (z) and 1/G(s) are not proper,
it is conjectured that the approximation holds true if
there exists derivatives of the desired trajectory yd until
an order that depends on the the zeros of the Euler–
Frobenius polynomials (Table 1) and the relative degree
of G(s). Moreover, Hτ (z) has a zero approaching −1
when the relative degree is even. From the definition
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0 2 4 6 8 10
-0.5

0

0.5

1

1.5

t

y

0 2 4 6 8 10

-0.5

0

0.5

t

u

y(t) for     τ = 0.25
y(t) for     τ = 0.5

u(t) for    τ = 0.5

u(t) for     τ = 0.25
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(4), in such a case, the impulse response of 1/Hτ (z)
contains a component of {q(τ)k; k ≥ 0} for |q(τ)| ↑ 1
(as τ → 0) or {q(τ)k; k < 0} for |q(τ)| ↓ 1 (as τ → 0),
the convergence of which becomes slower with respect
to the discrete-time indices. This makes it nontrivial to
prove the conjecture.

Remark 3 From the viewpoint of numerical anal-
ysis, the posed approximation problem is classified
under discretization for integral equations of the
first kind [5], which corresponds to the equation
yd(t) = L−1[G(s)L[u(t)]] in the settings. It is recognized
that careful treatment is required to discretize this kind of
integral equation [5,13]. Nonetheless, as far as the author
knows, discretization based on the piecewise constant
function, which is uncommon for numerical calculation
but practical for real-time control applications, has not

been researched thus far. This background encourages us
to tackle the problem.

3 The main result on approximation

In this section, the next theorem is proved.

Theorem 4 Consider ud(t) = L−1[1/G(s)L[yd(t)]](t),
which or the derivative of which is uniformly continuous
on (−∞,+∞) for G(s) with an odd or even relative de-
gree, respectively. Then,

∥∥Z−1[1/Hτ (z)Z[yd(kτ)]](bt/τc)− ud(t)
∥∥
∞ → 0 (9)

as τ → 0 where the transforms are two-sided.

Remark 5 For the continuous-time inversion 1/G(s),
ud(t) or dud(t)/dt is continuous if and only if yd(t) is
continuous with its derivative until the (n−m)th or (n−
m + 1)th order, respectively[14,15]. This fact is useful
for choosing the desired trajectory yd(t) satisfying the
condition of Theorem 4 for applications of the discrete-
time inversion 1/Hτ (z).

Since we have ȳ(t) = L−1[G(s)L[ud(bt/τcτ)]](t) and
Z−1[1/Hτ (z)Z[ȳ(kτ)]](k) = ud(kτ) from the definition
of Hτ (z), we obtain

∥∥Z−1[1/Hτ (z)Z[yd(kτ)]](bt/τc)− ud(t)
∥∥
∞

≤ ∥∥Z−1[1/Hτ (z)Z[yd(kτ)]](bt/τc)− ud(bt/τcτ)
∥∥
∞

+ ‖ud(bt/τcτ)− ud(t)‖∞
≤ ∥∥Z−1[1/Hτ (z)Z[vτ (kτ)]](bt/τc)∥∥∞

+ ‖ud(bt/τcτ)− ud(t)‖∞ (10)

where vτ (t) = L−1[G(s)L[ud(t)− ud(bt/τcτ)]](t). Since
‖ud(bt/τcτ)− ud(t)‖∞ → 0 for uniformly continuous
ud, the approximation (9) is implied by

∥∥Z−1[1/Hτ (z)Z[vτ (kτ)]](k)
∥∥
∞ → 0 (11)

This will be shown herein. To this end, we decompose
1/Hτ (z) as 1/Hτ (z) = Jτ (z)Kτ (z) where

Jτ (z) =
τn−m

cbτ

(z − exp(p1τ)) · · · (z − exp(pmτ))
(z − q1(τ)) · · · (z − qm(τ))

× 1
(z − qm+1(τ)) · · · (z − qn−1(τ))

(12)

Kτ (z) =
(z − exp(pm+1τ)) · · · (z − exp(pnτ))

τn−m
(13)
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for G(s) with an odd relative degree and

Jτ (z) =
τn−m

cbτ

(z − exp(p1τ)) · · · (z − exp(pmτ))
(z − q1(τ)) · · · (z − qm(τ))

× τ

(z2 − qm+1(τ)2)(z − qm+2(τ)) · · · (z − qn−1(τ))
(14)

Kτ (z) =
(z − exp(pm+1τ)) · · · (z − exp(pnτ))(z + qm+1(τ))

τn−m+1

(15)

for G(s) with an even relative degree. Without loss of
generality, it is assumed qm+1(τ) → −1 (as τ → 0).
Note that qm+1(τ) is expanded using Taylor series
as qm+1(τ) = −1 + O(τ) [6], where O(τ) → 0 and
O(τ)/τ → c(6= 0) as τ → 0.

Lemma 6 Let Lτ (z) = O(τ)
z−q(τ) ,

O(τ)
z2−q(τ) or 1

z−p(τ) , where
q(τ) = 1 + O(τ) and |p(τ)| → d(6= 1) as τ → 0. Then,∥∥Z−1 [Lτ (z)Z[v(k)]] (k)

∥∥
∞ < ∞ for any small τ > 0

and ‖v(k)‖∞ < ∞.

PROOF. See appendix A.

Lemma 7 ‖Z−1 [Jτ (z)Z[v(k)]] ‖∞ < ∞ for any small
τ > 0 and ‖v(k)‖∞ < ∞.

PROOF. See appendix B.

Lemma 8 Let {a0, · · · , an} and {bn
1 , · · · , bn

n} be defined
as (z − 1)n = a0z

n + · · · + an and Bn(z) = bn
1 zn−1 +

· · ·+ bn
n. Then,

n∑

l=0

an−ll
k =

{
0 for k = 0, . . . , n− 1

n! for k = n
(16)

and
∑n

l=1 bn
l = n! for any positive integer n.

PROOF. See appendix C.

Lemma 9 Assuming the same condition for ud as in
Theorem 4, we obtain ‖Z−1[Kτ (z)Z[vτ (kτ)]](k)‖∞ →
0 as τ → 0, where vτ (t) = L−1[G(s)L[ud(t) −
ud(bt/τcτ)]](t).

PROOF. Consider a function w(t) and assume that
d
dtw, · · · , di−1

dti−1 w are continuous and di

dti w exists. Then,
w(t+lτ) (l = 0, 1, · · · ) is expanded in the Taylor series as
follows: w(t+lτ) = w(t)+lτ d

dtw(t)+(lτ)2 d2

dt2 w(t)/2 · · ·+

(lτ)i di

dti w(t + θt
l lτ)/i!, where θt

l ∈ (0, 1). From this ex-
pansion with t = kτ and Lemma 8, we have

Z−1

[
(z − 1)i

τ i
Z[w(kτ)]

]
(k) =

1
i!

i∑

l=0

ai−ll
i di

dti
w(kτ+θk

l lτ)

(17)
for k = 0,±1, · · · . Since (13) or (15) leads to Kτ (z) =
(z−1+O(τ))p

τp = (z−1)p

τp + (z−1)p−1

τp−1
O(τ)

τ +· · ·+ O(τp)
τp , where

p = n−m or n−m + 1, Lemma 9 is implied by

∥∥∥∥Z−1

[
(z − 1)i

τ i
Z[vτ (kτ)]

]
(k)

∥∥∥∥
∞
→ 0 (18)

as τ → 0 for i = 0 to n−m or n−m + 1. Note that the
relative degree of G(s) is n−m. Then, although ud(t)−
ud(bt/τcτ) is discontinuous, di

dti vτ (t) is continuous on
(−∞, +∞) for i = 0, · · · , n−m−1 and exists for i = n−
m and any t ∈ (−∞, +∞). This implies that (17) holds
for w(t) = vτ (t) (i = 0, · · · , n − m). Moreover, since
‖ud(t) − ud(bt/τcτ)‖∞ → 0 and the relative degree of
G(s) is n−m, we obtain

∥∥∥ di

dti vτ (t)
∥∥∥
∞
→ 0 (i =, · · · , n−

m) as τ → 0. This fact in conjunction with (17) leads
to (18) for i = 0, · · · , n − m. This establishes Lemma
9 for G(s) with an odd relative degree. We will now
consider G(s) with an even relative degree. To prove
(18) for i = n −m + 1, we decompose G(s) as G(s) =

K
sn−m +Ḡ(s). Since Qm(s)

Pn(s) = 1
sn−m − Pn(s)−sn−mQm(s)

Pn(s)sn−m for
the monic polynomials Qm(s) and Pn(s) with orders m
and n, respectively, the relative degree of Ḡ(s) is equal
to or more than n − m + 1. For Ḡ(s) we can similarly
demonstrate the validity of (18) for i = n −m + 1. Let
ṽτ (t) = L−1

[
1

sn−mL[ud(t)− ud(bt/τcτ)]
]
(t). From the

definition of Hτ (z), (17) and Lemma 8, we have

(z − 1)n−m+1

τn−m+1
Z [ṽτ (kτ)]

=
(z − 1)n−m+1

τn−m+1

{
Z

[
L−1

[
1

sn−m
L[ud(t)]

]
(kτ)

]

− τn−mBn−m(z)
(n−m)!(z − 1)n−m

Z[ud(kτ)]
}

(19)

=
z − 1

τ

{
Z

[
1

(n−m)!

n−m∑

l=0

an−m−ll
n−mud(kτ + θk

l lτ)

− 1
(n−m)!

n−m∑

l=1

bn−m
l ud(kτ + (n−m− l)τ)

]}

(20)
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Moreover, with the mean value theorem, (20) leads to

Z
[

1
(n−m)!

{
n−m∑

l=0

an−m−ll
n−m d

dt
ud(kτ + θk

l lτ + φk
l τ)

−
n−m∑

l=1

bn−m
l

d

dt
ud(kτ + (n−m− l)τ + ψk

l τ)

}]
(21)

where φk
l ∈ (0, n − m + 1) and ψk

l ∈ (0, 1). Note that
d
dtud(kτ + θk

l lτ + φk
l τ) → d

dtud(kτ) and d
dtud(kτ + (n−

m − l)τ + ψk
l τ) → d

dtud(kτ) uniformly for t = kτ as
τ → 0. Subsequently, from Lemma 8, we conclude (18)
for vτ (t) = ṽτ (t). 2

Proof of Theorem 4 Lemma 7 and 9 imply (11). This
convergence along with the inequality (10) establishes
Theorem 4. 2

4 Conclusion

In this article, a problem on approximation of the in-
version of continuous-time systems by the inversion of
sampled-data systems with a piecewise constant input
was posed. Given was a positive conclusion to the prob-
lem under an assumption of smoothness of trajectories
in the noncausal framework. The result guarantees that
inversion of sampled-data systems can be substituted for
the continuous-time counterpart in control applications
such as perfect tracking, transient response shaping or
iterative learning control. It should be noted that the
result holds not only for continuous-time systems with
no unstable zero such as the one given in Example 1 but
also for continuous-time systems with unstable zeros. In
such cases, it is observed that noncausal piecewise con-
stant inputs approximate a noncausal continuous input
that achieves the desired trajectory.
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A Proof of Lemma 6

From the definition of the two-sided z-transform, we
have

w(k) = Z−1

[
1

z − r(τ)
Z[v(l)]

]
(A.1)

=

{ ∑k
l=−∞ r(τ)k−lv(l) if |r(τ)| < 1

∑+∞
l=−k+1 r(τ)k−lv(l) if |r(τ)| > 1

(A.2)
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This leads to

|w(k)| ≤




1
1−r(τ)‖v(l)‖∞ if |r(τ)| < 1

1
r(τ)−1‖v(l)‖∞ if |r(τ)| > 1

(A.3)

for any k. A similar formula for 1
z2−r(τ) holds likewise.

Lemma 6 follows from the above inequalities. 2

B Proof of Lemma 7

From the definition of Hτ (z), we have cbτ = c(τn−mAn−m+1/(n−
m)! + τn−m+1An−m+2/(n − m + 1)! + · · · )b. This im-
plies that |τn−m/(cbτ )| < ∞ for any small τ > 0.
Since qi(τ) = 1 + γiτ + O(τ2) for i = 1, · · · ,m, we
have (z−exp(p1τ))···(z−exp(pmτ))

(z−q1(τ))···(z−qm(τ)) = 1 +
∑

i
O(τ)

z−qi(τ) +
∑

i,j
O(τ)

z−qi(τ)
O(τ)

z−qj(τ) + · · · , which shows that Jτ (z) con-

sists of linear combination and product of O(τ)
z−q(τ) ,

O(τ)
z2−q(τ) and 1

z−p(τ) with bounded scalars. This relation
and Lemma 6 imply Lemma 7. 2

C Proof of Lemma 8

Consider a polynomial pn(t) = c0t
n+· · ·+cn−1t+cn and

the nth divided difference pn[iτ, · · · , (i + n)τ ] of pn(t),
which is recursively defined as pn[iτ, · · · , (i + n)τ ] =
pn[(i+1)τ,··· ,(i+n)τ ]−pn[iτ,··· ,(i+n−1)τ ]

(i+n)τ−iτ and pn[iτ ] = pn(iτ)
(i = 0,±1, · · · ,±n)[2]. Since the nth divided difference
is equal to the leading coefficient of the polynomial in-
terpolating at the points {iτ, · · · , (i + n)τ}[2], we have

pn[iτ, · · · , (i + n)τ ] = c0 (C.1)

It should be noted that (16) is expressed as follows using
the nth divided difference of qk(t) = tk:

qk[0, τ, · · · , nτ ] =

{
0 for k = 0, . . . , n− 1

1 for k = n
(C.2)

First, (C.1) directly leads to the case k = n in (C.2) for
any positive n. It is evident that the case k = 0, . . . , n−1
in (C.2) holds for n = 1. Assume that this case in (C.2)
holds for n = m. Then, it follows from the definition of
the divided difference and (C.1) that (C.2) holds for n =
m + 1. By induction, we establish (16) for any positive
integer n.

Note that the discrete-time transfer function of n-tuple
integrators G(s) = s−n with a piecewise constant func-
tion is expressed as τnBn(z)/{n!(z − 1)n}, which is
defined using sampled data of the step response of
G(s) = s−n, namely, y(t) = tn/n! [1]. Then, we have∑n

l=0 an−l
lnτn

n! = τn

n!

∑n
l=1 bn

l This formula and (16)
with k = n imply

∑n
l=1 bn

l = n!. 2
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