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Abstract—The relation between the continuous-time model
and the corresponding discrete-time model of sampled-data
system has not been believed to be very simple. However, from
the view point of Taylor expansion with respect to sample time,
the relation is approximated by unexpectedly simple polynomials.
In this paper, we show that there is a simple regularity in
Taylor expansion for any sampled-data systems. Next, it is
demonstrated that the regularity reduces symbolic calculation of
the Taylor expansion. Finally, we apply the result to identification
of continuous-time model from discrete-time input-output data of
sampled-data systems based on optimization techniques.

I. INTRODUCTION

Linear dynamic system theory has been exhaustively de-
velopped for both continuous-time and discrete-time systems.
Since most controllers for recent industrial applications are
implemented as digital computer systems, discretization by
sample and hold operations is an indispensable part of the
control systems. This implies that the interesting discrete-
time systems are necessarily related with the continuous-
time systems. However, their relationship is not very simple.
Let’s consider a single-input-single-output linear time-invariant
system (Ac, Bc, C) with the transfer function

G(s) = C(sI −Ac)
−1Bc (1)

=
b0s

m + b1s
m−1 + · · ·+ bm

sn + a1sn−1 + · · ·+ an−1s+ an
(2)

=
K(s− q1) · · · (s− qm)

(s− p1)(s− p2) · · · (s− pn)
(3)

Then the discrete-time system generated by sampler and zero-
order hold of a sample period τ is written by the system
matrices (A,B,C) where

A = exp (Acτ) =
∞∑
k=0

τk

k!
Ak

c (4)

B =

∫ τ

0

exp (Act) dtBc =
∞∑
k=0

τk+1

(k + 1)!
Ak

cBc (5)

and the pulse transfer function

H(z) = C(zI −A)−1B (6)

=

∣∣∣∣ A− zI B
C 0

∣∣∣∣
|A− zI|

(7)

=
β1(τ)z

n−1 + β2(τ)z
n−2 + · · ·+ βn(τ)

zn + α1(τ)zn−1 + · · ·+ αn−1(τ)z + αn(τ)
(8)

Moreover, from the expression
G(s)

s
=

r0
s

+
r1

s− p1
+ · · ·+ rn

s− pn
(9)

we derive another expression of the pulse transfer function

H(z) =
z − 1

z

{
r0z

z − e0
+

r1z

z − ep1τ
+ · · ·+ rnz

z − epnτ

}
(10)

=
Cτ {z − γ1(τ)} · · · {z − γn−1(τ)}
(z − ep1τ )(z − ep2τ ) · · · (z − epnτ )

(11)

It is well-known that the discrete-time system has n−m− 1
so-called discretization zeros, which are often unstable even
though the continuous-time system has no unstable zero.
This hinders efficient design of discrete-time controller for
continuous-time systems. No simple relation other than the
poles is expected between the continuous-time and discrete-
time systems. However, calculating Taylor expansion with
respect to the sample period τ , we can observe that there is
a simple regularity in the terms of the coefficients of both
the denominator and numerator. To illustrate the regularity,
let’s consider the transfer function (3) for the case where
(n,m) = (3, 1). From the expressions (4), (5) and (7), we
can easily calculate the Taylor expansions of the coefficients
in both denominator and numerator of the transfer function
(8):

α1(τ) =3− τa1 +
τ2

2
(a21 − 2a2)

+
τ3

3!
(−a31 + 3a1a2 − 3a3) + · · · (12)

α2(τ) =− 3 + τ(2a1) +
τ2

2
(−2a21 + a2)

+
τ3

3!
(2a31 − 3a1a2 − 3a3) + · · · (13)

α3(τ) =1− τa1 +
τ2

2
a21 +

τ3

3!
a31 + · · · (14)



β1(τ) =
τ2

2
b0 +

τ3

3!
(−a1b0 + b1)

+
τ4

4!
(a21b0 − a2b0 − a1b1) + · · · (15)

β2(τ) =
τ2

2
× 0 +

τ3

3!
(−a1b0 + 4b1)

+
τ4

4!
(2a21b0 − 8a1b1) + · · · (16)

β3(τ) =− τ2

2
b0 +

τ3

3!
(2a1b0 + b1)

+
τ4

4!
(−3a21b0 + a2b0 − 3a1b1) + · · · (17)

From those expressions, we observe that the index and expo-
nent of each term is restricted by the value of the corresponding
exponent of τ . For example, the terms of τ3/3! in α1(τ) are

−a31 + 3a1a2 − 3a3 (18)

where each summation of the indices multiplied by the corre-
sponding exponents is equal to the exponent of τ3, namely

1× 3 = 1× 1 + 2× 1 = 3× 1 = 3 (19)

This algebraic formula holds for all other terms in the de-
nominator’s coefficient α1(τ), α2(τ) and α3(τ). Moreover,
we observe that a similar algebraic formula holds for the
numerator’s coefficients β1(τ), β2(τ) and β3(τ). For example,
the terms of τ4/4! in β1(τ) are

a21b0 − a2b0 − a1b1 (20)

where each summation of the indices multiplied by the corre-
sponding exponents is equal to the exponent of τ4 decreased
by the relative degree n−m = 2, namely

1× 2 + 0× 1 = 2× 1 + 0× 1 = 1× 1 + 1× 1

=4− (n−m) = 2 (21)

In addition, this formula implies that the terms of τ0 and τ1

vanish because any non-negative index and exponent cannot
let the summations be 0− (n−m) = −2 and 1− (n−m) =
−1, respectively. This algebraic formula holds for all terms in
β1(τ), β2(τ) and β3(τ). Thanks to those algebraic regularities,
all parameters in the discrete-time systems are approximately
expressed by relatively simple polynomials of the parameters
of the continuous-time systems. This fact helps us identify
the continuous-time model from the sampled data and design
sophisticated discrete-time controllers.

In this paper, we show that any linear systems satisfy the
above mentioned regularities from the viewpoint of multi-
variable algebra. Next, we demonstrate that the regularities
reduce the calculation amount for the Taylor expansion of
the coefficients. Finally, we develop an approach to system
identification of the continuous-time system from the discrete-
time data.

II. MAIN RESULTS

Theorem 1. The Taylor expansion of every denominator’s
coefficient of H(z) is written by

αi(τ) =
∞∑
k=0

τk

k!

 ∑
ν∈Nn

0

c(k,ν) · aν1
1 aν2

2 · · · aνn
n

 (22)

where ν = (ν1, · · · , νn) ∈ Nn
0 are n non-negative integers

and c(k,ν)’s are real constants satisfying

c(k,ν) = 0 (23)

if

k ̸= 1 · ν1 + 2 · ν2 + · · ·+ n · νn (24)

Remark 1. The summation
∑

ν∈Nn
0

in the equation (22)
with the condition (23) and (24) is essentially reduced to the
finite summation only for the combination ν = (ν1, · · · , νn)
satisfying k = 1 ·ν1+2 ·ν2+ · · ·+n ·νn. Moreover, this implies
that the parameters ak+1, · · · , an do not emerge in the term
of τk when k is less than n. For example, when k = 1, 2 or
3, the possible combinations of the exponents are:

k (ν1, ν2, · · · , νn)
1 (1, 0, · · · , 0) a1
2 (2, 0, · · · , 0) a21

(0, 1, · · · , 0) a2
3 (3, 0, 0, · · · , 0) a31

(1, 1, 0, · · · , 0) a1a2
(0, 0, 1, · · · , 0) a3

Theorem 2. The Taylor expansion of every numerator’s coef-
ficient of H(z) is written by

βi(τ) =

∞∑
k=0

τk

k!

 ∑
µ∈Nn

0 ,j∈N0

c(k,µ, j) · aµ1

1 aµ2

2 · · · aµn
n bj


(25)

where µ = (µ1, · · · , µn) ∈ Nn
0 are n non-negative integers

and c(k,µ, j)’s are real constants satisfying

c(k,µ, j) = 0 (26)

if

k − (n−m) ̸= 1 · µ1 + 2 · µ2 + · · ·+ n · µn + j (27)

Remark 2. Similarly as Remark 1, the summation∑
µ∈Nn

0 ,j∈N0
in the equation (25) is essentially reduced to

the finite summation only for the combination implied by
the condition (26) with (27). Moreover, when the relative
degree n − m is positive, there exist no combination for the
exponents (µ1, · · · , µn) and the index j for small k because
they are non-negative. For example, when n − m = 2,
there is no combination of (µ1, · · · , µn) and j that satisfies
k − 2 = 1 · µ1 + 2 · µ2 + · · · + n · µn + j for k = 0 or 1,
which means that the terms of τ0 and τ1 vanish and the Taylor
expansion (25) begins from the term of τ2/2!. This property is
consistent with the known fact

H(z)

τn−m
→ (z − 1)mQn−m−1(z)

(z − 1)n
(28)

as τ → 0 where Qn−m−1(z) is the Euler-Frobenius
polynomial[1], [4].

As shown in the previous section, every example of The-
orem 1 and 2 is directly demonstrated by caluculating the
equation (7). However, Theorem 1 and 2 are mathematically
proved from the equations (10) and (11) by using the relation
between the coefficients and the poles and zeros, namely



(ai, bj) and (pi, qj) (i = 1, · · · , n; j = 0, · · · ,m) as described
below in Remark 3. To do so, we prepare some technical
terms for multi-variable polynomial algebra, which seems less
common than single-variable polynomial algebra. We regard
poles p1, · · · , pn or zeros q1, · · · , qm as variables of multi-
variable polynomial rings below.

Definition 1 (Monomial, Polynomial). [2] A monomial in
p1, · · · , pn is a product of the form

pν1
1 · pν2

2 · · · pνn
n (29)

where all of the exponents ν1, · · · , νn are non-negative inte-
gers. A polynomial f in p1, · · · , pn with coefficients in R is
a finite linear combination of monomials, namely

f(p1, · · · , pn) =
∑

(ν1,··· ,νn)

κ(ν1,··· ,νn)p
ν1
1 · pν2

2 · · · pνn
n , (30)

where κ(p1,··· ,pn) ∈ R and the sum is over a finite number of
n-tuples (ν1, · · · , νn). The set of all polynomials in p1, · · · , pn
with coefficients in R is denoted by R[p1, · · · , pn]. The max-
imum value of the sum ν1 + · · ·+ νn for non-zero coefficient
κ(ν1,··· ,νn) of a polynomial f is called the total degree of f
and is denoted as deg(f). In this paper, when all the sum
ν1+ · · ·+ νn for non-zero coefficient κ(ν1,··· ,νn) is equal each
other, the sum is called just as degree of the polynomial f and
denoted as deg(f).

Definition 2 (Symmetric polynomial). A polynomial S ∈
R[p1, · · · , pn] is called as symmetric if

S(p1, · · · , pn) = S(pσ(1), · · · , pσ(n)) (31)

for any permutation σ of the subscripts 1, · · · , n.

Definition 3 (Elementary symmetric polynomial). The elemen-
tary symmetric polynomials en,1, · · · , en,n ∈ R[p1, · · · , pn]
are defined as

en,1 = p1 + · · ·+ pn (32)
... (33)

en,j =
∑

1≤i1≤i2···≤ij≤n

pi1pi2 · · · pij (34)

... (35)
en,n = p1p2 · · · pn. (36)

In this paper, we define en,0 = 1 as one of the elementary
symmetric polynomials, which will simplify the following
proof.

Remark 3. The coefficients in the transfer function (2) are
related with the elementary symmetric polynomials of the poles
or zeros, i.e.

bj/b0 = (−1)jem,j(q1, · · · , qm) (j = 1, · · · ,m) (37)
ai = (−1)ien,i(p1, · · · , pn) (i = 1, · · · , n). (38)

Moreover, deg(b0) = 0, and

deg(bj) = deg(bj/b0) = deg(em,j(q1, · · · , qm)) = j (39)
deg(ai) = deg(en,i(p1, · · · , pn)) = i (40)

with respect to {q1, · · · , qm} or {p1, · · · , pn}.

Theorem 1 is directly proved by using the following
proposition known as the fundamental theorem of symmetric
polynomials[2]:

Proposition 1. Any symmetric polynomial f ∈ R[p1, · · · , pn]
is uniquely expressed by the elementary symmetric polynomials
en,i ∈ R[p1, · · · , pn]

f =
∑

(µ1,··· ,µn)

κ(µ1,··· ,µn)e
µ1

n,1 · · · eµn
n,n (41)

Corollary 1. If a symmetric polynomial f consists of mono-
mials with an identical degree, the polynomial f denoted as
(41) satisfies

deg(f) = 1 · µ1 + 2 · µ2 + · · ·+ n · µn. (42)

Proof of Theorem 1: From (11), we express the denom-
inator of the transfer function H(z) as

zn − (ep1τ + · · ·+ epnτ )zn−1

+ (e(p1+p2)τ + · · ·+ e(pn−1+pn)τ )zn−2

+ · · ·+ (−1)ne(p1+···+pn)τ (43)

=zn − zn−1
∞∑
k=0

(pk1 + · · ·+ pkn)τ
k/k!

+ zn−2
∞∑
k=0

{(p1 + p2)
k + · · ·+ (pn−1 + pn)

k}τk/k!

+ · · ·+ (−1)n
∞∑
k=0

(p1 + · · ·+ pn)
kτk/k! (44)

=zn − zn−1
∞∑
k=0

S(1,k)(p1, · · · , pn)τk/k!

+ zn−2
∞∑
k=0

S(2,k)(p1, · · · , pn)τk/k!

+ · · ·+ (−1)n
∞∑
k=0

S(n,k)(p1, · · · , pn)τk/k! (45)

where S(i,k)(p1, · · · , pn)’s (i = 1, · · · , n) are symmetric
polynomials satisfying deg(S(i,k)) = k. By using Proposition
1 with (38) and Corollary 1 with (40), we conclude Theorem
1 from (45).

Unlike Theorem 1, Theorem 2 is not directly concluded
from Proposition 1 or Corollary 1. We prepare the following
Lemma. For simplicity of discussions, we define p0 = 0 as
one of the poles of (9) and consider polynomial of the poles
{p0, p1, · · · , pn} with the residuals {r0, r1, · · · , rn} of (9).

Lemma 1. Consider a polynomial
n∑

µ=0

rµS({p0, p1, · · · , pn}\{pµ}) (46)

where S is any n-variable symmetric polynomial
and {p0, p1, · · · , pn}\{pµ} denotes the set of poles
{p0, p1, · · · , pn} except {pµ}. This polynomial can be
divided by the set of n+ 1 polynomials

n∑
µ=0

rµen,k({p0, p1, · · · , pn}\{pµ}) (47)



(k = 0, 1, · · · , n) and written by
n∑

k=0

[
Xk ·

n∑
µ=0

rµen,k({p0, p1, · · · , pn}\{pµ})

]
(48)

where Xk’s are n + 1-variable polynomial in en+1,i (i =
1, · · · , n + 1) that is the elementary symmetric polynomial
in n + 1 variables {p0, p1, · · · , pn}. Moreover, if deg(S) is
defined, it satisfies

deg(S) = deg(Xk) + k. (49)

Outline of proof: Lemma 1 is proved by mathe-
matical induction with respect to the number of variables
{p0, p1, · · · , pn} with {r0, r1, · · · , rn}.

We consider the elementary symmetric polynomials of
the variables {p0, p1, · · · , pn}, namely en+1,k(p0, p1, · · · , pn).
From the definition, we get the following recurrence formulas:

en+1,1(p0, p1, · · · , pn) =en,1(p0, · · · , pn−1) + pn (50)
en+1,2(p0, p1, · · · , pn) =en,2(p0, · · · , pn−1)

+ en,1(p0, · · · , pn−1)pn (51)
...

en+1,k(p0, p1, · · · , pn) =en,k(p0, · · · , pn−1)

+ en,k−1(p0, · · · , pn−1)pn (52)
...

en+1,n+1(p0, p1, · · · , pn) =en,n(p0, · · · , pn−1)pn (53)

By repetitive substitution for (50), (51), (52) and (53), we
obtain

(−pn)
k + (−pn)

k−1en+1,1 + · · ·

+(−pn)en+1,i−1 + en+1,k =

{
en,k for k = 1, · · · , n
0 for k = n+ 1

(54)

We denote n+1 polynomials (47) as En,k (k = 0, · · · , n) and
get the recurrence formulas:

En,0 =En−1,0 + rn (55)
En,k =En−1,k + En−1,k−1pn + rnen,k (k = 1, · · · , n− 1)

(56)
En,n =En−1,n−1pn + rnen,n (57)

which leads to

(−pn)
kEn,0 + (−pn)

k−1En,1 + · · ·+ (−pn)en,k−1 + En,k

− rn
{
(k + 1)(−pn)

k + k(−pn)
k−1en+1,1+

· · ·+ 2(−pn)en+1,k−1 + en+1,k}

=

{
En−1,k for k = 1, · · · , n− 1
0 k = n

(58)

Next, we express the symmetric polynomial S in n vari-
ables as the power series of the variable pn, namely

S({p0, p1, · · · , pn}\{pµ})
=
∑
k≥0

pknSk({p0, p1, · · · , pn−1}\{pµ}) (59)

for µ = 0, · · ·n− 1 where Sk are still symmetric polynomials
in n−1 variables. By these expressions, Proposition 1 and the
assumption of mathematical induction, the polynomial (46) is
written by∑

k≥0

pkn

n−1∑
µ=0

rµS({p0, p1, · · · , pn−1}\{pµ})

+ rnS({p0, p1, · · · , pn−1})

=
∑
k≥0

pkn

n−1∑
i=0

Xk,iEn,i + rnF (en,1, · · · , en,n) (60)

Substituting (54) and (58) into (60) and reducing the exponent
of pn, we conclude the proof.

Here we note that comparing the numerator of the expres-
sions (2) and (9) leads to the equations

n∑
µ=0

rµen,k({p0, · · · , pn}\{pµ})

=

{
0 (k = 0, · · · , n−m− 1)
(−1)kbk−(n−m) (k = n−m, · · · , n) (61)

Moreover, from (39) we have

Proof of Theorem 2: From the expression (10), the
numerator of H(z) is written by

n∑
µ=0

rµ
∏

k∈{0,1,··· ,n}\{µ}

(z − epkτ ) (62)

=zn
n∑

µ=0

rµ − zn−1
n∑

µ=0

rµ

∞∑
l=0

τ l

l!
S(1,l)({p0, · · · , pn}\{pµ})

+ zn−2
n∑

µ=0

rµ

∞∑
l=0

τ l

l!
S(2,l)({p0, · · · , pn}\{pµ})

+ · · ·+ (−1)n
n∑

µ=0

rµ

∞∑
l=0

τ l

l!
S(n,l)({p0, · · · , pn}\{pµ})

(63)

where S(i,l)’s are symmetric polynomial

S(i,l)(x1, · · · , xn) =
∑

for all combinations of
i numbers {j1, · · · , ji}

(xj1 + · · ·+ xji)
l (64)

We note that deg(S(i,l)) = l for i = 1, · · · , n. Applying
Lemma 1, we express the coefficient of zj of (63) as

(−1)j
n∑

µ=0

rµ

∞∑
l=0

τ l

l!
S(j,l)({p0, · · · , pn}\{pµ})

=(−1)j
∞∑
l=0

τ l

l!

n∑
µ=0

rµS(j,l)({p0, · · · , pn}\{pµ}) (65)

=(−1)j
∞∑
l=0

τ l

l!

n∑
k=0

[
Xk ·

n∑
µ=0

rµen,k({p0, p1, · · · , pn}\{pµ})

]
(66)

where

l =deg(Xk) + k (67)



Since p0 = 0, we have en+1,i(p0, p1, · · · , pn) =
en,i(p1, · · · , pn) and

Xk =
∑

(ν1,··· ,νn)

κ(ν1,··· ,νn)e
ν1
n,1 · · · eνn

n,n (68)

=
∑

(ν1,··· ,νn)

κ(ν1,··· ,νn)(−1)1aν1
1 · · · (−1)naνn

n (69)

The equations (61), (66) and (69) with (67) conclude Theorem
2.

III. APPLICATIONS

A. Reduction of symbolic calculation for Taylor expansion

We can calculate Taylor expansion of αi(τ) or βi(τ) with
respect to τ by calculation of the matrix determinant (7)
with the truncated sum of the series (4) and (5). Since the
calculation consists only of multiplication and addition, it
is easily aided by software tools for symbolic mathematical
calculation, e.g. Maple. For example, we consider the case of
(n,m) = (8, 5) and calculate Taylor expansion of β2(τ) up to
the 5th-order term. To do so, it is sufficient to let

Ac =


0
... I
0

−a8 · · · · · · −a1

 (70)

Bc = [ 0 · · · 0 1 ]
T (71)

C = [ b5 · · · b0 0 0 ] (72)

A =I +Acτ + · · · , A5
cτ

5/5! (73)
B =Bcτ +AcBcτ

2/2! + · · ·+A4
cBcτ

5/5! (74)

and calculate the determinant in the numerator of (7). Then
we have

β2 =− b0τ
3/3! + (7b1 − 3a1b0)τ

4/4!

+ (−3a2b0 + 8a21b0 − 18a1b1 + 23b2)τ
5/5!

+ P6 · τ6/6! + P7 · τ7/7! + · · ·+ P5×9 · τ5×9/(5× 9)!
(75)

where Pk’s (k = 6, 7, · · · , 5 × 9) are polynomials in
{a1, · · · , a8, b0, b1, · · · , b5}. We obtain the correct Taylor ex-
pansion up to the 5th-order term in (75). On the other hand, the
polynomials Pk’s which consist of large number of monomials
are meaningless and wast computational resources because the
matrices (73) and (74) are truncated up to the 5th-order term.
However, since Theorem 2 implies that the coefficient ai and
bi with the subscript i more than 5 − (n − m) = 2 never
emerge in the Taylor expansion up to the 5th-order term, we
can reduce the calculation of the determinant in the numerator
of (7) by just letting ai = 0 and bi = 0 for i > 3. The efficacy
of this technique is shown in Table I.

The calculation of the Taylor expansion based on the
matrix determinant in the equation (7) is essentially inefficient
because it is difficult to reduce all of the meaningless higer
terms with respect to τ even though the theoretically useless

P6 P7 P8 P9 P10 Total
Monomials without reduction 7 11 18 22 36 94
Monomials with reduction 5 6 7 5 5 28

TABLE I. THE NUMBERS OF MONOMIALS WITH OR WITHOUT
REDUCTION FOR CALCULATING β2

coeffients are eliminated as demonstrated above. (e.g. many
greater-order terms than τ5 are still generated in the equation
(75)) However, based on the approach of the proof for The-
orem 1 and 2 and Lemma 1, we can directly calculate the
interesting-order term without generating any useless terms.
To demonstrate the approach, we consider the same example
of (n,m) = (8, 5). From the equation (10), we express

β2 =
{
e(p1+p2)τ + · · ·+ e(p7+p8)τ

}
r0 + · · ·

+
{
e(p0+p1)τ + · · ·+ e(p6+p7)τ

}
r8 (76)

=

∞∑
k=0

τk

k!

[{
(p1 + p2)

k + · · ·+ (p7 + p8)
k
}
r0 + · · ·

+
{
(p0 + p1)

k + · · ·+ (p6 + p7)
k
}
r8
]

(77)

where p0 = 0. On the other hand, by comparing the equations
(2) and (9) we have

0 =r0 + r1 + · · ·+ r8 (78)
0 =r0(p1 + · · ·+ p8) + r1(p0 + p2 + · · ·+ p8) + · · ·

+ r8(p0 + · · ·+ p7) (79)
0 =r0(p1p2 + · · ·+ p7p8) + · · ·+ r8(p0p1 + · · ·+ p6p7)

(80)
b0 =r0(p1p2p3 + · · ·+ p6p7p8) + · · ·

+ r8(p0p1p2 + · · ·+ p5p6p7) (81)
...

b5 =r0p1 · · · p8 + r1p0p2 · · · p8 + · · ·+ r8p0 · · · p7 (82)

By using the procedures of the proof for Theorem 2 and
Lemma 1, each term in the summation (77) for k is expressed
by the left-hand sides (78), · · · (82) and (38) which are equiva-
lent to the coefficients bj(j = 0, · · · ,m) and ai (i = 1, · · · , n).
For example, we directly calculate

τ5/5!
[{
(p1 + p2)

5 + · · ·+ (p7 + p8)
5
}
r0 + · · ·

· · ·+
{
(p0 + p1)

5 + · · ·+ (p6 + p7)
5
}
r8
]

=(−3a2b0 + 8a21b0 − 18a1b1 + 23b2)τ
5/5! (83)

without generating any terms other than τ5.

B. Application to system identification of continuous-time
models

Since 2n parameters (α1, · · · , αn, β1, · · · , βn) of the
sampled-data system H(z) are determined by n + m + 1
parameters π = (a1, · · · , an, b0, · · · , bm) of the continuous-
time system G(s), we denote those dependences as αi(π) and
βi(π). Theorem 1 and 2 imply that they can be approximated
by relatively simple polynomials of π for small sample time
τ . We apply this property to identification of continuous-time
systems from discrete-time input-output data of sampled-data
systems.



Let’s consider a set of input and output data of the discrete-
time system H(z): {u(k); k = 0, · · · , N} and {y(k); k =
0, · · · , N − 1}. Then the data satisfies the equation

y(k + n) +
n∑

i=1

αi(π)y(k + n− i)

−
n∑

i=1

βi(π)u(k + n− i) = 0 (84)

We denote π̂ as estimated values of π and consider the squared
estimation error.

J(π̂) =
n∑

k=0

e2(k) (85)

where e(k) = y(k + n) +
∑n

i=1 αi(π̂)y(k + n − i) −∑n
i=1 βi(π̂)u(k+n− i). Our identification problem is to find

the minimizer of J(π̂). From Theorem 1 and 2, the function
J(π) is approximated by a simple polynomial of the parameter
π̂ for a small sample time τ .

We apply the steepest decent method with the golden
section linear search to finding the minimizer[3], namely

π̂l+1 = π̂l − ηl


∂J
∂π1

...
∂J
∂πn

 (l = 0, 1, · · · ) (86)

where

∂J

∂πj
=

n∑
k=0

2e(k) ·

(
n∑

i=1

∂αi(π)

∂πj
y(k + n− i)

−
n∑

i=1

∂βi(π)

∂πj
u(k + n− i)

)
(87)

and the step size ηl is determined by the linear search for
sections generated by the golden ratio.

Example 1. We consider a continuous-time system

G(s) =
b0

s2 + a1s+ a2
(88)

and the sampled-data system H(z) with a sample time τ =
0.01. The functions αi(π̂) and αi(π̂) in the criterion (85) are
approximated by

α1 =− 2 + τa1 + (−a21 + 2a2)τ
2/2+

(−3a1a2 + a31)τ
3/3! + (4a21a2 − a41 − 2a22)τ

4/4! (89)
α2 =1− a1τ + a21τ

2/2− a31τ
3/3! + a41τ

4/4! (90)
β1 =b0τ

2/2− a1b0τ
3/3! + (a21 − a2)b0τ

4/4! (91)
β2 =b0τ

2/2− 2a1b0τ
3/3! + (3a21 − a2)b0τ

4/4! (92)

We estimate a parameter set π = (a1, a2, b0) = (10, 12, 4)
in the parameter space [0, 100] × [0, 300] × [0, 20] from the
response of H(z) for the discrete-time input

u(t) = sin(2πt) + 2 sin(3πt) (93)

where t = kτ ∈ [0, 5] (k = 0, 1, · · · ). Table II shows the
estimation result by the steepest descent method (86). No initial
values π̂0 ∈ [0, 100]× [0, 300]× [0, 20] converging to the local

initial values estimated values
π̂0 = (1, 1, 1) π̂159 = (10.0001, 11.9994, 3.9999)
π̂0 = (20, 20, 20) π̂75 = (9.9983, 12.0014, 3.9994)
π̂0 = (20, 20, 1) π̂149 = (9.9993, 12.0050, 3.9996)
π̂0 = (1, 20, 1) π̂187 = (9.9990, 12.0070, 3.9993)
π̂0 = (1, 1, 20) π̂180 = (10.0006, 11.9988, 4.0001)

TABLE II. PARAMETER ESTIMATION FOR π = (10, 12, 4) UNDER THE
STOP CONDITION J(π) ≤ 10−12

minimums other than the true value π = (10, 12, 4) is found
as far as the author tried.

Example 2. We consider a continuous-time system

G(s) =
K

s(Ts+ 1)
· s− q

s− p
=

b0s+ b1
s(s2 + a1s+ a2)

(94)

and the sampled-data system H(z) with a sample time τ =
0.01. The Taylor expansions of the parameter αi and βi (i =
1, 2, 3) of H(z) are presented as (12), (13), · · · , (17). By using
the low-order terms of Taylor expansions less than 5-th order,
we estimate a parameter set π = (a1, a2, b0, b1) = (3, 5, 2, 4)
in the parameter space [0, 10]4 from the response of H(z) for
the discrete-time input

u(t) = sin(20πt) + 2 cos(500πt) (95)

where t = kτ ∈ [0, 1] (k = 0, 1, · · · ). Table III shows the
estimation result by the steepest descent method (86).

initial values estimated values
π̂0 = (1, 1, 1, 1) π̂16032 = (3.0011, 4.8856, 2.0000, 4.0026)
π̂0 = (1, 1, 10, 10) π̂4064 = (3.0193, 4.8910, 2.0000, 4.0387)
π̂0 = (1, 10, 10, 10) π̂1937 = (2.9862, 5.0898, 1.9999, 3.9713)

TABLE III. PARAMETER ESTIMATION UNDER THE STOP CONDITION
J(π) ≤ 10−14

IV. CONCLUSION

In this paper, we proved that Taylor expansion of sampled-
data systems with respect to the sample time has a regularity
for their subscripts and exponents depending on the exponent
of the sample time. It is shown that this regularity helps us
to reduce symbolic calculation of Taylor expansion. Since the
regularity implies that the relation between the continuous-
time and discrete-time systems can be approximated by simple
polynomial, we successfully applied it to identification of the
continuous-time model from discrete-time data of sampled-
data systems based on optimization techniques.
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