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Design of Compensator sto Relocate Sampling Zeros of Digital Control
Systems for DC Motors

Takuya $co*and Masafumido**

Abstract : This paper presents a design method for a pre-filter for relocating sampling zeros based on the Taylor expan-
sion, which was recently found to be reduced to a simple formula for a relative degree of 2. The method is successfully
applied to sampled-data systems of a DC motor, which usually has a sampling zerelrbat makes it dficult to

apply feedforward control based on pole-zero cancellation. We experimentally demonstrate that the discrete-time model
following controller works well and is free from oscillations or ringing for sampled-data systems of a DC motor when
the proposed zero-relocation filter is implemented as an analog circuit for an operational amplifier connected to a power
amplifier. We also experimentally demonstrate that an analog filter can be replaced by a fast digital filter.

Key Words: sampling zero, feedforward control, digital control, model following control, motor control, multi-rate
sampled-data system

1. Introduction it difficult to apply feedforward control based on pole-zero can-
Recently, control systems for various mechanical appnca_cellation to such systems. One possible approach for orerco
tions have generally been digital systems. While such syste ing this dificulty is to relocate the sampling zeros by adjusting
are continuous-time systems having samplers and zera-orddhe system parameters. In fact, a general continuous-tysie s
holds (ZOH) with the same time period, they are essentiallytem described by
hybrids of continuous- and discrete-time systems. The aenve K(s— ) - - - (S— )

tional approach for analyzing and designing such systems is  G(s) = -— SR 3
based on the theory for discrete-time systems that desdtilee (5= P1)(S=Pp2)--+(S—pn)

values of the system variables at the sample time. Althougheads to the sampled-data system

the theory for linear discrete-time systems is largely catinp

ble with that for linear continuous-time systems, someazit H.(2) = Cdz—y1(®)} - {Z= yn-1(7)} @)

theoretical relationships are ambiguous. One such rekttip

is the correspondence of the zeros of transfer functions. We h | q functi fih ; "
consider the following transfer function of a DC motor: whose po ,es and zeros are functions o .e pafaf“e €BeP. .
However, in contrast to the poles, there is no simple refatio

(9 = 4218 B between then continuous-time zergs, - - - , gm} and then-1
S(s+6.4) sampling zerogy1(7), - - - , ¥n-1(7)}, Which are generally not ex-
pressed by closed formulae of the parameters of the cont&uo
time transfer function. Hence, to the best of our knowledge,
no versatile methods have been reported for adjusting the pa
rameters to relocate sampling zeros. The Taylor expansion of

(z—er7)(z— ePeT) .- - (z— emnT)

Applying the ZOH and sampler with the sample time 0.01,
gives the pulse transfer function for the sampled-dataesysis

0.0206¢ + 0.9789)

H(2) = (z- 1)(z- 0.9379) ) sampling zeros is partially given by
While the poles of the pulse transfer function at 1 ar@B@9 Q22
respectively correspond to the continuous-time poles atd a (1) = 1+ gkt + kT +0(c%) %)
—-6.4, the pulse transfer function has a discretization zero at
—-0.9789, which does not correspond with any continuous-timefork = 1,--- ,m[4]. The Taylor expansion of the otherm-1

zero. To complicate matters, because the zereCe789 is  sampling zeros has recently been derived [8]. Moreoverag w
very close to-1, feedforward compensation based on pole-zerodemonstrated that the Taylor expansionfiognts can be ex-
cancellation generates persistent oscillations in thpudwand pressed by simple formulae for the case m = 2, which im-
consequently undesirable oscillations in the mechanysaés. plies that it should be possible to approximately relochte t

In various control applications, the transfer functions of sampling zeros in this case [8]. In this paper, we consider DC
sampled-data systems often have unstable zeros, which maksotor models as typical examples of this case and develop a
pre-filter for relocating sampling zeros. Th&eztiveness of
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2.1 Taylor Expansion of Sampling Zeros for the General L+ =<y ey <py J2 LI 4+ =K
Case i = 1.1
The zeros of the pulse transfer function tend to be 1 or

the zeros of the so-called Euler—Frobenius polynomBial,(2) It should be noted that

[1].[9], namely, Fo(2) = K(z= 1)"Bn-m(2) (17)
K"M(z - 1)"B,-
H.(2 — L | ) ; rT(Z) (6) and all the zeros of the Euler—Frobenius polynorBial,(2) are
.(n - Mi(z-1) o real, negative, and distinct, which implig§(1) # 0. Moreover,

as the sample time — 0, whereBy(2) is defined as for the casen = 1, we have~{(1) # 0 and the Taylor expansion

Bu(2) = b2 + 522 + - + b @ (12) is also valid fort = 1.
and 2.2 Taylor Expansion for theCasen— m= 2

‘ I e[ k+1 Although the expressions in Theorem 1 are generally not
by = Z(‘l) I -1 ) (8) very simple, it has been demonstrated thatrfer m = 2 the
=1

polynomialF,(2) and the expansion cficients (12) reduce to
Moreover, the Taylor eXpanSion with reSpeCt to the Samp‘le ti re|ative|y Simp]e expressions [8] Here, we consider
7 of the numerator of the pulse transfer functidp(z) and the
zeroy(t) that tends to the zero of the Euler—Frobenius polyno- Go(s) = ;
mial By_m(2) has recently been derived [8]. (s=pu)(s=p2)
which is the main model used in various control applications
such as DC motors. Moreover, to introduce adjustable parame
ters into (18) while maintaining—m = 2, we add a single pole
and a zero to (18), namely,

s—q

(18)

Theorem 1 [8] Assume thatG(s)/s has simple polésand let
r be the residue of the continuous-time transfer func@gs)
at polep (i.e.,r = lims,, G(s)/(s— p)). The pulse transfer
function can then be expressed as

—m e ces =
o [Fo@ + Fi@r+ - + Fu@r* + -} o G(s) G- p)GE=p)E= ) (19)
2 s e ) .(9)
h which leads to the pulse transfer function
where
Ci{z— ya(m)Hz — y2(7)}
H.(2) = , 20
Fu(@) = @—?;;;E]ouxzyf' (10 D= - ene- o) 20
where lim_oy1(r) = =1 and lim_o7y2(r) = 1. The expres-
and sions in Theorem 1 for = —1 reduce to the following simple
_ n expressions [8]:
ol )= D, ()T .
e e Fo(2) =5;(Z - 1) (21)
{0,1,--- . np\({l} 11) l
( Fi(@) =5; {(Py + P2 + P2~ Q)2+
The sampling zero that tends to the zero of the Euler—Frobenius
polynomial denoted by has the Taylor expansion (pl + P2+ P3—40)2 = 2(py + P2 + P3) — a} (22)
)’(T)—/1+01T+—T +§T +- a—':r”+-~~ ,(12) FZ(Z)Zm[{piJF p§+ p§+ P1P2 + P2P3 + P3P1
! :
where ~(pL+ P2+ pa)a} Z
N +2(py + P2 + P3)(P1 + P2 + P3 — 40)Z
a1 = - (Fo(D)  Fa(), (13)

1 - {S(pi + P+ P3) + 5(PLp2 + P2Ps + Papr)
— (Fo()  {aaFg (1) + 201F5(2) + 2F2(1)} . (14) +3(p1 + P + P2l 23)
a3 = - (Fo(D) " {3a1a2Fg (1) + a3F Q)+

1
, Fa(2) =5 [{—(pf +P3+ P3) — PLP2Ps
+ 20F1 () + (a7 + a2)F{ (2) + 6a1F5(1) ’

— P1P2(p1 + P2) — P2ps(P2 + P3) — PsP1(P3 + P1)

+6F3(1)}, (15) o
+(pf + P3 + P3+ Pup2 + P2Ps + Papr)a} 2
+{3(0} + P3 + P3) + 13p1p2ps
a, = - (Fg(D) {Z @, i, FO() +8p1p2(P1 + P2) + 8P2Ps(P2 + Ps) + 8Pspa(Ps + P1)
~13(p% + p3 + P3) — 18(p1p2 + P2Ps + Ppu)a} Z
+ Z K> oo FOW) + F#(/l)}, (16) +4(p3 + p3 + p3) + 14p1p2Ps
Y +9p1P2(P1 + P2) + 9P2P3(P2 + Ps) + 9PsP1(Ps + P1)
! This assumption does not restrict the range of applications. For 6(n2 2 2 11
example, if the function has a pole of order 2, one can consider +6(P1+ P2+ P3)A+ 11(Pup2 + P2Ps + P pl)q(]2'4)

two simple polesp andp + € wheree is a small number [8].
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Substituting these expressions into (13), (14) and (15have

yi(t) = -1+ a7+ —‘r + B 3' e, (25) O.z
a1 =—(p1+ P2+ ps—0a)/3, (26)
@z =—(p1+ P2+ ps— 97/, (27) o8
a3 = =7(p} + p5 + P3) >
~ 27(pip2 + PEPs + PLP5 + P1P3 + P3Pa + P2P3) .
— 42p1p2p3 + 32(P1p2 + P2P3 + P3pP1)g ' N
+22(p% + 3+ p2)a— 5(p1 + P2 + Pa)? — 107, 2 Y
(28) | | |
Moreover, since the limit of the other sampling zerg(7), o e _rl?a ° °

which is at 1, is not a multiple root d¥o(2) and hencé=((1) #
0, the Taylor expansion af,(7) is also given by (12) in Theo-
rem 1. This leads to

Fig.1 Examples of values of sampling zeros.

3.1 Experimental Setup of DC Motor
2, (PLt P2t P+t 20)° 7

y2(7) = 1+qT+ 5 TR -(29) We consider a DC motor with the power amplifier depicted
’ in Fig. 2, the continuous-time model from the ing\] of the
2.3 Approximate Relocation of Zeros Based on Trunca- amplifier to the angl® [rad] of the inertial load is identified as
tion (1), which was given in the Introduction. Applying the ZOH

From (25) and (29) and neglecting the higher-order terms of
the expansions, we expect to be able to approximately manip-
ulate the locations of the sampling zerg(r) andy»(r) in (20)
by adjusting the values of the extra zeyand poleps. Here,
we truncate (25) and (29) up to the second-order term and min-
imize the absolute values of the zesa$r) andy,(r) to be can-

celed by the poles of feedforward controller. This resulta in (maxon RE-max21) == oMt rotary | sampler |
stable response with a rapid decay. The absolute valuessf tru bommmmm - o ‘ i
cated (25) and (29), namely, . Seee . H(7)
PL+ P2+ P3—0Q (PL+ P2+ p3— q)2 2 Fig. 2 Experimental setup.
‘—1 - 3 T— e , (30)
2 and a sampler with a sample tinmme= 0.01 s to the DC motor
1+0gr+ qz% (31) system depicted in Fig. 2, we have the pulse transfer fumctio
(2), which has a zero at0.9789. To relocate this zero, we ap-
are minimized to 12 by choosing ply the method developed in the previous section to the fieans
function (1), namely the addition of a single pole and zero de
q=-1/z, (32) scribed by (34). We have
Ps = —4/7 = (Pp1 + P2)- (33)

4218  s+100
S(s+6.41) s+ 3936

G(9) = (35)

Here, as a case study of the approach proposed above, we

apply it to the model for the DC motor; i.e., we consider ) )
The value ofrp = —0.0641 is not too small to approximately

1 s+l (34) relocate the zeros to arourd/2 (see Fig. 1); the scalar 431
S(s-p) s+4/t+p is independent of the location of the zeros and poles. Conse-
and evaluate the accuracy of the above approximate minimizaquently, the transfer function (35) leads to the pulse feans
tion. From numerical calculations for randomly selectegy, function
it was demonstratt_ad that the real values of the sampl_ingszero . 0.011093¢ + 0.4519)¢ — 0.3681)

71(7) andy,(r) derived from (34) are solely characterized by H@ = Z-1)Z-09379)¢- 0.01953)’ (36)

the valuerp, as depicted in Fig. 1, which shows 10,000 ran-

dom examples forz( p) € [0.0001,0.1] x [-20Q -0.1]. From whose zeros can be cancelled by poles that have much shorter
those numerical examples, we found that for values of jpole decay times than the pulse transfer function (2).

G(s) =

and sample time that do not make p too small, the modified To implement the additional pole and zero for (35), we in-
DC motor model (34) is féective for relocating the sampling troduce an operational amplifier circuit, as depicted in Big
zeros to about1/2. whose transfer function is

3. Experiment of Model Following Control C(s) = _C1 s+ V(GR)

. . : C, s+1/(CRy)

To demonstrate theffectiveness of the relocation technique 2 /(CoRe)

proposed in the previous section, we apply the approach to &xample capacitances and resistances that realize théetrans
digital model following control for an experimental DC mato  function (35) are

37)
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byt B L "
1+b,'Bs() Do+ bz i+ +bp iz D  BQ

(47)

cancels all the zeros of the objective systetfz) and hence
the stability of the zeros is necessary for the stability haf t
controller.

For the zero-relocated pulse transfer function (36) of tkie D
motor, we choose the canonical model as

0.0012
Fig. 3 DC motor system with operational amplifier circuit. Hu(2) = (z—0.95p2 (48)
Cy = C, = 0.14F, (38) and set
Ry = 100k, (39) D@ = (1-0.1z%3. (49)
Ry = 254kQ. (40)

Figure 5 shows the experimental results for the above citgitro
with the input

3.2 Model Following Control

To demonstrate theffectiveness of the zero relocation, we u® =1 (Ist<4)
M 0 otherwise.

50
apply model following control [5] to the modified DC motor 0)

system, which fully relies on pole-zero cancellation to ssu
the output of the objective system to converge to the output o
the canonical model.

Consider the discrete-time objective systg@) = H(2)0(2)* 2
with H(2) = B(2)/A(2) where g
B(2) =boz" ! + 01272 + -+ + by_1, (41) g
A@) ="+ a7t +--- +ap, (42) g
0 ; 4
and the canonical modgl(2 = Hu(2)0m(2). Then, the model Time [s]

following control gives an inputi(z) that makes the outpy(?)
satisfy

D@ - Im(2) =0, (43)

where the roots oD(2) are set as appropriate values to adjust
the convergent rate of the output erygk) — ym(K) to 0 ask —

Angle [rad]
> 9 o

N
T

0 1 2 3 4 5 6 7 8

co. LetD(2) = 1+ diz? + --- + dyz " then such input is given Time [s]
by
1 Fig. 5 Inputu(k) and outputy(k) signals from the motor with relocation
0@ = b {D@Zn() - Bs(9U(2 - R},  (44) flter
We conducted the same experiment on the DC motor without

where the filter, namely the pulse transfer function (2) and Figwg;

Bs(2) =izt + -+ + by_gz ™), (45) set

R@) =(dy — &) + (do — @) Z L + - - + (0 — an)Z ™, D@ = (1-01z "7 (51)

(46) corresponding to the transfer function (2) and apply theehod

which is depicted by the block diagram in Fig. 4. The feedbackfouowm_g contro_ller (44) with the same canonical model48)(
to the discrete-time model. It should be noted here thadath
upr (k) i) T —— " the diference of value for the order of the denominators in
— G FE-PpEFO ——i H _(Z_)_,Ty (36) and (2) necessarily causes théfetence of the order of
- (49) and (51), the roots of (49) and (51) are set as the same
R(2) value, which results in the same convergent rate of the dutpu
errory(k) — ym(K). Figure 6 shows the experimental results ob-

B,(2) + +

Fig.4 Model following control tained without the relocation filter. Although the desiredput
trajectory is tracked very well by the motor both with andtwit
block consisting obgl andBs(2) in the controller, namely out the relocation filter, the oscillations in the input sagjito

29(2) and U(z) indicate the z-transformed variables of the the DC motor_withou'F the reIocation_fiIte_r are sustained much
discrete-time signay(k) andu(k) (k = 0,1,---), respectively. longer than with the filter, as shown in Figs. 5 and 6. Such os-
In the following discussions, the time and z-domain signals areCillatory phenomenon is caused by the poles of the controlle
described likewise. (47), which originates from the sampling zero neér
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o
|
Input signal voltage [V]

Input signal voltage [V]
o v & o o

4
Time [s]

©

-0.05 ,

Angle [rad]
)
Angle [rad]
s
=
I

N

-0.15 L L L L

I
e 05 1 15 2 2.
! I I I I I I Tlme?sl

3 35 4 4.5

o

TimAé [s]
Fig. 8 Input signal and motor angle for amplifier with relaoatfilter

to th t I't .
Fig. 6 Inputu(k) and outpul(k) signals from the motor without the relo- (response to the external torque)

cation filter. L . . o
3.3 Substitution of Analog Filter by Fast-Sampling Digital

Filter

Moreover, it is often observed that the model following con- The zero-relocation filter introduced to the DC motor in the
troller without the relocation filter causes the body of theton ~ Previous section is used to block the lower-frequency compo
to hum loudly and jitter in the angle even after the outpuheft NeNt in the step-shaped signals generated by the ZOH, as de-
canonical model settles to the constant value. Such hum anBicted in Fig. 9. This observation suggests approximatieg th
jitter occur frequently in particular when external torgaep-
plied to the motor shaft. Figure 7 shows such an example of
the observed phenomenon when a constant torque is applied 1
the motor shaft by another current-controlled DC motor. (The ©
external torque of 4.92mNm has been applied since 1s.) In con %

©
%

trast, the model following controller with the relocatioltefi g4 ~--Input to the filter (ZOH signal)| |
is stable when the output of the canonical model settleseo th P —Output from the filter
constant value; any oscillatory phenomenon such as the cas gl ‘ ‘ ‘ ‘ ‘ ‘

. . . . . -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
without the relocation filter is not observed even when vari- Time [s]

ous external torques are applied by the external motor or fin-
gers. Figure 8 shows an example of response of the DC motor
with the relocation filter applied by the same external tergs
Fig. 7.

Fig. 9 Input and output of zero relocation filter.

output of the analog relocation filtes ¢ g)/(s — p3) by the
output of the fast ZOH signal with a time periédhat is suf-
ficiently shorter than the original sample timefor the ZOH
(see the transformation from the upper part to the middlé par
in Fig. 10¥; this transformation is mathematically validated by
the fact that the continuous signal from the analog filterlwan
approximated by the step-shaped signal from the ZOH with ar-
bitrary accuracy provided the width of the step ishisiently
small [7]. Since a single step of the ZOH signal of the time
‘ ‘ ‘ ‘ ‘ periodt is a sequence of the/s times repeated steps of the
i ' ' ZOH signal of the time period, the ZOH of the time period
7 in the middle part of Fig. 10 is virtually replaced by the fast
i ZOH of the time period without loss of accuracy. Finally, the
1 continuous-time filterg— g)/(s — p3) connected with the vir-
| tual fast ZOH and the sampler of the time periléads to the
discrete-time filter

O r N w & o
T

Input signal voltage[V]

|
ot
o
Sk
wE
-
o

B — A F(§)=(1—51)Z(s{£l[ﬂx}]}, (52)

Tin&Je] S—P3 S

Fig. 7 Input signal and motor angle for the amplifier withcue teloca- ~ where £71[-] and Zs[-] indicate the inverse Laplace trans-
tion filter (response to the external torque). form and z-transform of the discrete-time signal obtaingd b

8 For simplicity, we assume that = v/N whereN is a natural
number.
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I s—q K Yi |
—:—>| ZOH I ‘ o o— 1>
i = S — D3 s(s —p) T
LT T _____ )
Lt H(z)
fast
sampler
sS4 fast K Y
—_>8*p3 _J(so > ZOH 9s(s—p) _O?O—é
T 5
1 T T T T T T T T T T e——— " — " C— T T T T 1
| Yi !
_ rate | _|z—(¢¢"° +ps—q)/ps| S| fast K o o L
' changer =1 2 — epsd > ZOH ] s(s —p) 7-0 :9
1 1
LT 4] o |

Fig. 10 Substitution of analog relocation filter by digitaumterpart.

sampling at the time period, respectively [2],[8]. Since
Zs {L*l [1/(s- p)]} = 7/(z- e™), we have
151 ((Ps—0A)/psz  a/psZ
F@= (-7 )( 2~ D/ez | 3k J (53)
_ 2= (9™ +ps-q)/ps. (54)

Z— b

Thus the analog relocation filter with the virtual fast ZOH & th
input port and the fast sampler at the output port is sultstitu
by the digital filter (54) with the rate changer that simplgeats
the same value for the output fofs times (see the transforma-
tion from the middle part to the lower part in Fig. 10). Figure
11 shows an example of the output of the digital relocatiderfil
with the output of the corresponding analog relocationrfilte

Signal voltage [V]

Analog relocation filter
—Fast digital relocation filter

I I I I
0.06 007 0.08 0.09

Time [s]

I I I
0.03 0.04 0.05 0.1

Fig. 11 Approximation of output of the analog relocationefilby fast

digital filter with 6 = 7/10 = 0.001.

No.00, xxx 2011

o N N O
T T

I
N
T

Input signal voltage [V]
|
B

1
o2

4
Time [s]

©
T

---Desired response
— Output

o
T

Angle [rad]
s

N
T

o

Time [s]

Fig. 12 Input signal generated by the fast ZOH and responseahbtor

with the digital relocation filter of = 7/10 = 0.001.

of model following control was performed to demonstrate the
effectiveness of the proposed zero-relocation filter for sahpl
data systems of a DC motor. It was demonstrated that the ana-
log zero-relocation filter could be replaced by a fast didita

ter.
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