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Abstract—This paper presents the Taylor expansion of all the
zeros of sampled-data systems with respect to the sample time
τ . Using this expansion, we have developed a method to relocate
sampled zeros to facilitate feedforward control based on pole-
zero cancellation. The proposed approach has been successfully
applied to the feedforward control of a DC motor by using an
analog compensator for zero relocation. Illustrative experiments
have also been described.

I. INTRODUCTION

In recent times, control systems for various applications
have usually been implemented as digital control systems;
such systems are continuous-time systems having samplers
and zero-order holds of the same time period and are es-
sentially hybrids of continuous- and discrete-time systems.
A conventional approach to the analysis and design of such
systems is based on theories of discrete-time systems that
describe the behavior on the sample times. Although the
theories for linear discrete-time systems are mostly compatible
with those for linear continuous-time systems, some of their
critical theoretical relationships are still ambiguous. One such
relationship is the correspondence of the zeros of transfer
functions; the location of the sampled zero with respect to the
sample time is given by an intricate function. This hinders the
application of inversion-based feedforward control to digital
control systems. To illustrate this problem, let us consider the
following example:

Example 1: The continuous-time model of a simple DC
motor is given by

G(s) =
1

s(s + 1)
(1)

Using the zero-order hold and a sampler having sample time
τ = 0.1, a sampled-data system

H(z) =
4.8374 × 10−3(z + 0.9672)

(z − 1)(z − 0.9048)
(2)

is obtained; this system has the sampled zero at −0.9048,
which is very close to −1. Let

M(z) =
0.17z

z2 − 1.32z + 0.5
(3)

represent a model that has the desired response and consider
feedforward control based on pole-zero cancellation for the
sampled-data system H(z), namely, F (z) = M(z)H(z)−1

ZOH G(s)
y y(iτ)ur

Fig. 1. Feedforward control for sampled-data systems
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Fig. 2. The step response of M(z)H(z)−1 and the output of G(s)

(see Fig. 1). Then, a typical response of this feedforward
controller is a large oscillation having long decay time (Fig. 2,
left); this leads to inter-sample ripples in the system response
(Fig. 2, right).

It is known that for various control applications the transfer
function of sampled-data systems usually have unstable zeros.
This makes it difficult to apply feedforward control to such
systems. A possible approach to overcome this difficulty is the
relocation of the sampled zeros by adjusting the parameters of
the system. In fact, a general continuous-time system

G(s) =
K(s − q1) · · · (s − qm)

(s − p1)(s − p2) · · · (s − pn)
(4)

leads to the sampled-data system

Hτ (z) =
Cτ{z − γ1(τ)} · · · {z − γn−1(τ)}
(z − ep1τ )(z − ep2τ ) · · · (z − epnτ )

(5)

the poles and zeros of which are functions of the parameters
of G(s). In contrast to the poles, however, there is no simple
relation between the m continuous-time zeros {q1, · · · , qm}
and the n − 1 sampled zeros {γ1(τ), · · · , γn−1(τ)}, which
are generally not expressed as closed formulae. Although the
Taylor expansion of the sampled zeros is partially given by

γk(τ) = 1 + qkτ +
q2
kτ2

2
+ O(τ3) (6)



TABLE I
ZEROS OF THE EULER-FROBENIUS POLYNOMIAL

n − m − 1 zeros
1 −1

2 −2 −
√

3, (−2 −
√

3)−1

3 −5 − 2
√

6,−1, (−5 − 2
√

6)−1

...
...

odd λi1, · · · , λi(i−2)/2,−1, λ−1
i(i−2)/2

, · · · , λ−1
i1

(λi1 < · · · < λi(i−2)/2 < −1)
even λi1, · · · , λi(i−1)/2, λ−1

i(i−1)/2
, · · · , λ−1

i1

(λi1 < · · · < λi(i−1)/2 < −1)

for k = 1, · · · ,m [1], the expansion of the other n − m − 1
sampled zeros has not yet been derived. This hinders the
development of techniques to relocate the sampled zeros. To
the best of the authors’ knowledge, no research has been
conducted in this regard.

However, recent research has shown that the limit of the
sampled zeros, as τ → 0, exhibits a regular property[2], [3].
On the basis of this property, we can derive the Taylor ex-
pansion formulae of the zeros with respect to the sample time
and apply the formulae to relocate the zeros approximately
to facilitate feedforward control. The remainder of this paper
is organized as follows. In Section 2, we derive the Taylor
expansion of the zeros. In Section 3, we apply the expansion to
the relocation of the zeros for a DC motor. Finally, in Section
4, we conclude the paper.

II. TAYLOR EXPANSION OF ALL SAMPLED ZEROS

It is known that the limit of the sampled zeros has the
following property:

Proposition 1: [2], [3] As τ → 0,

Hτ (z) → τn−m(z − 1)mBn−m(z)
(z − 1)n

(7)

where Bn−m(z) is the Euler-Frobenius polynomial of the
degree n − m − 1, given by

Bn−m(z) = bn−m
1 zn−m−1+bn−m

2 zn−m−2+ · · ·+bn−m
n−m (8)

where

bn−m
k =

k∑
l=1

(−1)k−lln−m

(
n − m + 1
n − m − l

)
, k = 1, · · · , n−m.

(9)

It is known that the zeros of the Euler-Frobenius polynomial
(Table I) exhibit the following regularities[4]:

1) Every zero is a zero of order 1 on the negative real axis.
2) If λ is a zero, then 1/λ is also a zero.

From these properties, we derive the Taylor expansion of the
sampled zeros.

Theorem 1: Let the transfer function of the sampled-data
system (5) be expressed as

Hτ (z) =
τn−m{F0(z) + τF1(z) + τ2F2(z) + · · · }

(z − ep1τ ) · · · (z − epnτ )
(10)

Then, the sampled zero that tends to the zero of the Euler-
Frobenius polynomial, λ, is expanded as

γ(τ) = λ + ατ + βτ2 + O(τ3) (11)

where

α = −F1(λ)
F ′

0(λ)
(12)

β = −α2F ′′
0 (λ) + 2αF ′

1(λ) + 2F2(λ)
2F ′

0(λ)
(13)

Proof: Letting τ = 0 for the first and second derivatives
of

F0

(
λ + ατ + βτ2 + O(τ3)

)
+ τF1

(
λ + ατ + βτ2 + O(τ3)

)
+ τ2F2

(
λ + ατ + βτ2 + O(τ3)

)
+ O(τ3) = 0 (14)

leads to αF ′
0(λ) + F1(λ) = 0 and 2βF ′

0(λ) + α2F ′′
0 (λ) +

2αF ′
1(λ) + 2F2(λ) = 0, respectively, which reduce to (12)

and (13) if F ′
0(λ) 6= 0.

From Proposition 1, we have F0(z) = K(z −
1)mBn−m(z)/(n−m)!. As every zero of the Euler-Frobenius
polynomial Bn−m(z) is a zero of order 1 on the negative real
axis[4], we have F ′

0(λ) 6= 0.
The polynomials F0(z), F1(z), and F2(z) in Theorem 1,
i.e., the Taylor expansions of the numerator of Hτ (z), are
calculated as described in Lemma 1, which can be easily
programmed using a symbolic computation software, e.g.,
Maple or Matlab symbolic math toolbox.

Lemma 1: Assume that G(s)/s has no multiple pole and
let rl = G(s) · (s − pl)/s|s=pl

(l = 0, 1, · · · ), where p0 = 0
and {p1, · · · , pn} are the poles of G(s). Then

Fk(z) =
1

(n − m + k)!

n∑
j=1

c(k, j)(−1)jzn−j (15)

c(k, j) =
n∑

l=0

rl

∑
for all combinations of j numbers
{i1, · · · , ij} chosen from
{0, 1, · · · , n}\{l}

(pi1 + · · · + pij )
n−m+k

(16)

Remark 1: If G(s) has a double pole at p, we can still
apply Lemma 1 to G(s) approximately by substituting slightly
different poles p and p+ε for the double pole. The assumption
in Lemma 1 does not prevent us from applying the result to
major applications such as the one described in Example 1.

III. APPLICATION TO RELOCATION OF SAMPLED ZEROS

For the case of the relative degree n−m = 2, the expansion
(11) of the sampled zero can be simplified as

γ(τ) = −1 + κτ − 1
2
κ2τ2 + O(τ3) (17)



where κ = {(q1 + · · · + qm) − (p1 + · · · + pn)}/3 1. On the
basis of (17), another element C(s) with free parameters q0

and p0 is added to the objective system G(s) as

C(s)G(s) =
s − q0

s − p0
× K(s − q1) · · · (s − qn−2)

(s − p1) · · · (s − pn)
(18)

the sampled zeros of which can be easily relocated by adjust-
ing the values of q0 and p0. The zeros of the sampled-data
system derived from (18) are given by

γ(τ) = − 1 +
(

κ +
q0 − p0

3

)
τ − 1

2

(
κ +

q0 − p0

3

)2

τ2

+ O(τ3) (19)

γk(τ) =1 + qkτ +
q2
kτ2

2
+ O(τ3) (k = 0, 1, · · · , n − 2)

(20)

Neglecting O(τ3), we can adjust the locations of γ(τ) and
γ0(τ) by setting the values of q0 and p0. In order to maximize
the convergence rate of the poles added to cancel the zeros
γ(τ) and γ0(τ), we minimize the values of |γ(τ)| and |γ0(τ)|
to 1/2, which can be achieved by setting

(q0, p0) =
(
−1

τ
,−4

τ
+ 3κ

)
(21)

Example 2: Consider a DC motor with an inertial load:

G(s) =
1.35 × 105

s(s + 5.3)
(22)

where the input and output are input voltage [V] and the pulse
count of a rotary encoder [count] (2048 counts = 2π rad),
respectively. When τ = 0.01, the sampled-data system is given
by

H(z) =
6.6323(z + 0.9825)
(z − 1)(z − 0.9484)

(23)

The sampled zero at −0.9825 is not desirable from the
viewpoint of the convergence rate required for feedforward
control. Hence, before the DC motor, we insert an operational
amplifier circuit corresponding to C(s) described above (see
Fig. 3).

-

+

Power amp.
(maxon LDC30/2)

OP. amp.
(OP07)

Motor
(maxon RE-max21)

C2C1

R1 R2
load

rotary

encoder

C(s) G(s)

!"#

Fig. 3. Motor with power and operational amplifiers

1The authors validated this result for n ≤ 6 by using symbolic computation
software.

As τ = 0.01 and κ = {−0−(−5.3)}/3 for the DC motor and

C(s) = −C1

C2
× s + 1/(C1R1)

s + 1/(C2R2)
(24)

for the circuit, the optimum values of (q0, p0) are

(q0, p0) = (−100,−394.7) (25)

which are realized by setting C1 = C2 = 0.1 µF, R1 =
100 kΩ, R2 = 25.4 kΩ for the capacitors and resistors.
Applying the compensator C(s), we have the sampled-data
system

H̄(z) =
3.5364(z + 0.4493)(z − 0.368)

(z − 1)(z − 0.9484)(z − 0.01861)
(26)

which is more suitable for the pole-zero cancellation of
feedforward control than the one given by (23).

To demonstrate the effectiveness of the zero-relocation
technique described above, experiments of feedforward control
with and without C(s) were conducted (see Fig. 4). It should
be noted that 1/z is added to the feedforward controller to let
the transfer function to be a proper one. Figs. 5 and 6 show the

ZOH G(s)desired

response

ZOH G(s)desired

response

Fig. 4. Feedforward control for the DC motor with and without compensation

input and output signals, respectively, of the DC motor with
the zero compensator C(s) when a step function was applied
as the reference or desired response ri. Figs. 7 and 8 show
those without the zero compensator. Although there exists a
steady-state error in the former case, which can be suppressed
by applying feedback compensation, the shape of the response
is similar to that of the reference (Fig. 6). On the other hand,
there is significant oscillation in the input signal to the DC
motor in the latter case (Fig. 7). This oscillation excites the
unmodeled dynamics of the DC motor, thereby resulting a
large deviation of the output from the reference (Fig. 8).

0.5 1 1.5 2 2.5 3
-10

-8

-6

-4

-2

0

2

4

6

8

10

Time [ s ]

V
o
l
t
a
g
e
 
[
 
V
 
]

Fig. 5. Input signal for the step reference of the compensated motor
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Fig. 6. Response for the step reference of the compensated motor
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Fig. 7. Input signal for the step reference of the uncompensated motor

IV. APPLICATION TO DESIGN OF MULTI-RATE
SAMPLED-DATA SYSTEMS

Fig. 9 shows the inter-sample output signals of the zero
compensator C(s), which reveals that C(s) plays the role of
a signal filter in the step function of zero order hold (ZOH).
This indicates that a sufficiently fast ZOH can be substituted
for C(s) in order to approximate the shape of the inter-sample
signal. A ZOH having sample time τ and C(s) are replaced by
a fast ZOH having the sample time δ = τ/n and n discrete-
time systems {J0(z), · · · , Jn−1(z)}, where n is an integer(see
Fig. 10).

V. CONCLUSION

This paper presented the Taylor expansion of all the sampled
zeros with respect to the sample time τ . On the basis of this
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Fig. 8. Response for the step reference of the uncompensated motor
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Fig. 9. Output signal from the compensator C(s) = s−q
s−p
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Fig. 10. Substitution of the compensator with a fast-rate sampled-data system

expansion, we proposed a technique to relocate the sampled
zeros approximately for continuous-time systems with relative
degree n − m = 2. Moreover, we proposed the use of a
compensator to relocate the sampled zeros for DC motor
applications; the compensator is realized as an operational
amplifier circuit. The results of our experiments were pre-
sented to illustrate the effectiveness of the compensator for
the relocation of the sampled zeros. In the future work, we
plan to design multi-rate sampled-data systems on the basis
of the approach described in this paper.
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