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Abstract: This paper shows a regularity of Taylor expansion of sampled zeros which implies that the approximated value
of the sampled zeros is dominated by the coefficients of the highest-order terms in the numerator and denominator of
the continuous-time system. Moreover, it is shown that the first-order term of any discretization zero is expressed by
a linear formula of the summations of all poles and zeos. Numerical examples are presented to demonstrate successful
applications to stabilizing sampled zeros.

Keywords: sampled zero, sampled-data systems, digital control

1. INTRODUCTION

Control systems for various applications have usually
been implemented as digital control system; such sys-
tems are continuous-time systems having samplers and
zero-order holds. A basic approach to the analysis and
design of such systems is based on theories for linear
discrete-time systems that describe the behavior on the
sample times. Zeros of those discrete-time systems are
called sampled zeros. It is well-known that sampled ze-
ros are not simply related with the zeros of the original
continuous-time systems. To make matters worse, sam-
pled zeros are often unstable even if the continuous-time
zeros are stable.

Example 1: Consider a DC motor:

G(s) =
1

s(s+ 1)
(1)

Using the zero-order hold and a sampler having sample
time τ = 0.1, we have a discrete-time system:

H(z) =
4.837× 10−3(z + 0.967)

(z − 1)(z − 0.905)
(2)

If control approaches based on pole-zero cancellation
such as feedforward control or adaptive control are ap-
plied to H(z), the unstable phenomenon called ringing
occurs because the zero at −0.965 is very close to −1.■

Unfortunately, there is no general closed formula ex-
pressing sampled zeros. However, it is known that Taylor
expansion of sampled zeros with respect to the sample
time is simpler than expected.

Example 2: Consider a continuous-time system

G(s) =
s+ b1

s3 + a1s2 + a2s+ a3
(3)

=
s+ b1

(s− p1)(s− p2)(s− p3)
(4)

† Takuya Sogo is the presenter of this paper.

Then we have the discrete-time system

H(z) =
β1(τ)z

2 + β2(τ)z + β3(τ)

z3 + α1(τ)z2 + α2(τ)z + α3(τ)
(5)

=
β1(τ)(z − γ1(τ))(z − γ2(τ))

(z − ep1τ )(z − ep2τ )(z − ep3τ )
(6)

where τ is the sample time. While the poles are expressed
as the closed formula, the sampled zeros γ1(τ) and γ2(τ)
cannot be simply expressed. However, we have Taylor
expansion of the sampled zeros as

γ1(τ) =1− b1τ + b21τ
2 − b31τ

3 + · · · (7)

γ2(τ) =− 1 + (a1 − b1)τ/3

+ (2a1b1 − b21 − a21)τ
2/9

+ (5b31 + 6a2b1 − 6a21b1 + 3a1a2 + a31

− 9a3)τ
3/45 + · · · (8)

which have a simple regularity on the order of τ and the
subscripts, i.e. the sum of the subscript of ai and bi in
the term of τk is equal to the order k: e.g. only a1 or b1
emerges in the term of τ1; the coefficients for τ2 consist
only of b1 × b1, a1 × b1 or a1 × a1, the sum of whose
subscripts is equal to 2; the sum of the subscripts of the
coefficient for τ3 is restricted to be 3.■

Moreover, one can demonstrate that such regularity
holds true for systems with higher degrees in the numera-
tor or denominator. One can expect that the approximated
value of the sampled zero is generally dominated by the
value of the coefficient ai or bi with the smaller number
of the subscript i.

In this paper, we show the above-mentioned regularity
on sampled zeros for general systems. Moreover, we dis-
cuss applications to adjusting the sampled zeros for stable
pole-zero cancellation.



2. TAYLOR EXPANSION OF SAMPLED
ZEROS

We consider SISO continuous-time system

G(s) =
b0s

m + b1s
m−1 + · · ·+ bm

sn + a1sn−1 + · · ·+ an−1s+ an
(9)

or

ẋ(t) = Acx(t) + bcu

y = cx(t)
(10)

where G(s) = c(sI − Ac)
−1bc. In the following discus-

sions, we assume b0 = 1 for simplicity without loss of
generality for study on sampled zeros. The continuous-
time system (10) connected to the zero-order hold and a
sampler having sample time τ leads to discrete-time sys-
tem

ξ(k + 1) = Aξ(k) + bv(k)

w(k) = cξ(k)
(11)

where[
A b
0 1

]
= exp

([
Ac bc
0 0

]
τ

)
(12)

The transfer function is expressed by

H(z) =
β1z

n−1 + β2z
n−2 + · · ·+ βn

zn + α1zn−1 + · · ·+ αn−1z + αn
(13)

where

H(z) =c(zI −A)−1b =

∣∣∣∣ A− zI b
c 0

∣∣∣∣∣∣ A− zI
∣∣ (14)

The formula (12) leads to Taylor expansion of the
discrete-time coefficient βi (i = 1, 2, · · · , n) which is
expressed by the continuous-time coefficients bi (i =
1, · · · ,m) or ai (i = 1, · · · , n).

Example 3: The coefficients in the numerator (5) are
expressed as follows:

β1 =τ2/2− (a1 − b1) τ
3/3!

+
(
a1

2 − a1b1 − a2
)
τ4/4!

−
(
a1

3 − a1
2b1 − 2 a1a2

+a2b1 + a3) τ
5/5! + · · · (15)

β2 =− (a1 − 4 b1) τ
3/3! +

(
2a21 − 8 a1b1

)
τ4/4!

−
(
3 a1

3 − 13 a1
2b1 − a1a2

+8 a2b1 − 2 a3) τ
5/5! + · · · (16)

β3 =− τ2/2 + (2 a1 + b1) τ
3/3!

−
(
3 a1

2 + 3 a1b1 − a2
)
τ4/4!

+
(
4 a1

3 + 6 a1
2b1 − 3 a1a2

−a2b1 − a3) τ
5/5! + · · · (17)

■

It should be noted that there is no term of τ0 or τ1 in the
above example.

It was shown that for any n and m there is has
no term lower than τn−m . Hence, the numerator of
H(z) is expressed as F0(z)τ

n−m + F1(z)τ
n−m+1 +

F2(z)τ
n−m+2 + · · · or

H(z) =
τn−mΦ(z)

zn + α1zn−1 + · · ·+ αn−1z + αn
(18)

where

Φ(z) = F0(z) + F1(z)τ
1 + F2(z)τ

2 + · · · (19)

and Fi(z) (i = 0, 1, · · · ) is n− 1-degree polynomial of z
independent from τ .

Example 4: From the results of Example 3, the nu-
merator (5) is expressed as τ2Φ(z) where

F0(z) =(z2 − 1)/2 (20)

F1(z) =
{
−(a1 − b1)z

2 − (a1 − 4b1)z

+(2a1 + b1)} /3! (21)

F2(z) =
{
(a21 − a1b1 − a2)z

2 + (2a21 − 8a1b1)z

+(3a21 + 3a21b1 − a2)
}
/4! (22)

■
Let Taylor expansion of the sampled zero γ(τ) be

γ(τ) = λ+ Λ1τ + Λ2
τ2

2!
+ · · ·+ Λk

τk

k!
+ · · ·

(23)

Then Λk is expressed as

Λk =
dk

dτk
γ(τ)

∣∣∣∣
τ=0

(24)

which can be obtained from dk

dτkΦ(γ(τ))
∣∣∣
τ=0

because we

have Φ(γ(τ)) ≡ 0 by the definition and dk

dτkΦ(γ(τ)) ≡
0 for any positive integer k. From the equation
dk

dτkΦ(γ(τ))
∣∣∣
τ=0

= 0 where k = 1, 2 and 3, we have

Λ1 =− F1(λ)/F
(1)
0 (λ) (25)

Λ2 =−
{
Λ1F

(2)
0 (λ) + 2Λ1F

(1)
1 (λ) + F2(λ)

} /F (1)
0 (λ) (26)

Λ3 =−
{
3Λ1Λ2F

(2)
0 (λ) + Λ3

1F
(3)
0 (λ)

+2Λ2F
(1)
1 (λ) + (3Λ2

1 + Λ2)F
(2)
1 (λ)

+6Λ1F
(1)
2 (λ) + 6F3(λ)

}
/F

(1)
0 (λ) (27)

It is noted that F (1)
0 (λ) ̸= 0 because λ is the zero of

F0(z) and defined by (20). Hence, the expressions (25),
(26) and (27) with λ = 1 or −1 lead to the expansions (7)
or (8), respectively.



The general term Λk is recursively expressed by
Λ1, · · · ,Λk−1 and F

(j)
i (i = 1, · · · , k, j = 0, 1, · · · , k),

namely

Λk =

−

 ∑
(mk−1)

k!

c(mk−1)
F

(m1+···+mk−1)

0 (λ)

k−1∏
j=1

Λ
mj

j + k!Fk(λ)

+

k−1∑
l=1

kCl

 ∑
(mk−l)

(k − l)!

c(mk−l)
F

(m1+···+mk−l)

l (λ)

×
k−l∏
j=1

Λ
mj

j

 l!


{

F
(1)
0 (λ)

}−1
(28)

where
∑

(mk)
indicates the summation for all nonnega-

tive k-tuples (m1, · · · ,mk) satisfying

1 ·m1 + 2 ·m2 + · · ·+ k ·mk = k (29)

and the positive integer c(mk) is defined by c(mk) =
m1!1!

m1 · · ·mk!k!
mk .

3. REGULARITY IN THE EXPANSION
OF SAMPLED ZERO

From the definition (12), (13) and (14), the coefficient
βi (i = 1, · · · , n) is expressed by

βi =

∞∑
k=0

τk
m∑
j=0

fi,k,j(a1, · · · , an)bj (30)

where fi,k,1, · · · , fi,k,m are polynomials of a1, · · · , an,
i.e.

fi,k,j(a1, · · ·, an)

=
∑

di,k,j(l1, · · · , ln)al11 · · · · · alnn (31)

where di,k,j(l1, · · · , ln) is rational constant and the sum
is over all n-tuples of nonnegative integers (l1, · · · , ln)
satisfying the inequality

l1 + l2 + · · ·+ ln ≤ k (32)

As is seen in Example 3, the sum is actually restricted to
the much smaller set of the n-tuples than the inequality
(32). It was shown that such restriction holds true for any
n and m.

Theorem 1: [3] The sum (31) is restricted to n-tuples
of nonnegative integers (l1, · · · , ln) satisfying

1 · l1 + 2 · l2 + · · ·+ n · ln = k − (n−m)− j
(33)

■
Example 5: Consider the same example as Example

2 or 3. The number of 3-tuples (l1, l2, l3) satisfying the
inequality (32) is 1, 3, 6, 15(= 3 + 6 + 3 + 3) and 21(=
3+6+6+3+3) for k = 0, 1, 2, 3, 4 and 5, respectively;
the number of the combination explodes as k increases.

b0(= 1) (j = 0)
k l1 l2 l3

0 - - -
1 - - -
2 0 0 0
3 1 0 0
4 0 1 0

2 0 0
5 0 0 1

1 1 0
3 0 0

b1 (j = 1)
k l1 l2 l3

0 - - -
1 - - -
2 - - -
3 0 0 0
4 1 0 0
5 0 1 0

2 0 0

Table 1 Nonnegative integers (l1, l2, l3) satisfying (33)
(n = 3,m = 1)

k l1 l2 l3 ν1

1 1 0 0 0
0 0 0 1

2 2 0 0 0
0 1 0 0
1 0 0 1
0 0 0 2

3 3 0 0 0
1 1 0 0
0 1 0 1
2 0 0 1
1 0 0 2
0 0 0 3

k l1 l2 l3 ν1

4 4 0 0 0
2 1 0 0
0 2 0 0
1 0 1 0
3 0 0 1
1 1 0 1
0 0 1 1
2 0 0 2
0 1 0 2
1 0 0 3
0 0 0 4

Table 2 Nonnegative integers (l1, l2, l3, ν1) satisfying
the equality (33) (n = 3,m = 1)

However, the result in Theorem 1 suppresses the increase
of the combination very much as is seen in Table 1. ■

Theorem 2: Let γ(τ) be a sample zero that goes to
λ which is a zero of the polynomial F0(z) as τ → 0.
Then assuming λ is not a multiple zero of the polyno-
mial F0(z), Taylor expansion of the sample zero γ(τ) is
expressed by

γ(τ) =λ+
∞∑
k=1

{
τk
∑

ck(l1, · · · , ln, ν1, · · · , νm)

al11 · · · alnn bν1
1 · · · bνm

m

}
(34)

where the sun is over all n + m-tuples of nonnegative
integers (l1, · · · , ln) and (ν1, · · · , νm) satisfying

1 · l1 + · · ·+ n · ln + 1 · ν1 + · · ·+m · νm = k
(35)

and ck(l1, · · · , ln, ν1, · · · , νm) is real constant. ■
Example 6: Consider the same example as Example 2

or 3. (3 + 1)-tuples (l1, l2, l3, ν1) satisfying the equality
(35) are listed in Table 2. Theorem 2 implies that the
sampled zero should be expressed by

γ(τ) =λ+ τ (c11a1 + c12b1) + τ2
(
c21a

2
1 + c22a1b1

+c23a2 + c24b
2
1

)
+O(τ3) (36)

where λ = −1 or 1 and cij (i = 1, 2, j = 1, 2, 3, 4) are
real constants. Those expressions mean that the value of
the sampled zero is dominated by the coefficient a1 and
b1. It should be noted that the above-mentioned property



is consistent with the concrete expression (7) or (8) cal-
culated by the formula (25) and (26).■

It should be noted that the polynomial F0(z) defining
λ in Theorem 2 is generally expressed by

F0(z) = (z − 1)mBn−m−1(z)/(n−m)! (37)

where Bi(z) (i = 0, 1, · · · ) is i-degree Euler-Frobenius
polynomial, all zeros of which are known to be single and
negative real[1][2]. Hence the assumption in Theorem 2
is satisfied for any sampled zero γ(τ) that tends to the
zero of the Euler-Frobenius polynomial Bi(z) which is
called discretization zero.

Corollary 1: For any n ≥ m + 2 ≥ 2, the discretiza-
tion zero is expressed

γ(τ) =λ+ τ (c11a1 + c12b1) + τ2
(
c21a

2
1 + c22a1b1

+c23a2 + c24b
2
1 + c25b2

)
+O(τ3) (38)

where cij (i = 1, 2, j = 1, · · · , 5) are real constants; the
term that includes bi (i = 1 or 2) is eliminated if m = 0
or 1 and bi is undefined. ■

4. APPLICATION TO STABILIZING
ZEROS

Consider model following control (MFC) depicted in
Fig.1 for a discrete-time system H(z) = B(z)/A(z)
where

B(z) = β1z
n−1 + β2z

n−2 + · · ·+ βn (39)

A(z) = zn + α1z
n−1 + · · ·+ αn−1z + αn (40)

The MFC makes the output y follow the output of the
desired model Hm(z) where the polynomial D(z) =
zn+d1z

n−1+ · · ·+dn represents the characteristic poly-
nomial of the closed loop. Moreover, one can consider

Hm(z)
D(z)

zB(z)

D(z)−A(z)

B(z)

r y
B(z)

A(z)
z

Fig. 1 Model following control

extension of the MFC to adaptive MFC based on RLS es-
timation for B(z) and A(z). Since the MFC or adaptive
MFC relies on pole-zero cancellation, stability of zeros is
indispensable for application.

Example 7: Consider applying MFC or adaptive MFC
to the DC motor model (1) in Example 1. Since the
discrete-time model (2) has the zero at −0.965, the pole
that cancels the zero causes so-called ringing phenomena
which should be avoided from the stability viewpoint. To
do so, we consider a filter

C(s) =
s− q

s− p
(41)

with free negative parameters q and p to be inserted be-
tween the zero-order hold and G(s), namely

C(s)G(s) =
s− q

s(s+ 1)(s− p)
(42)

We can estimate the zeros for (42) by the Taylor expan-
sion (7) and (8) by letting

(b1, a1, a2, a3) = (−q, 1− p,−p, 0) (43)

From the expression of the terms of the first order, we
expect that |γ1| < 1 and |γ2| < 1 when we choose (q, p)
satisfying q < 0 and q > p − 1. By letting (q, p) =
(−5,−10) or (−20,−40), we have

HCG(z) =
0.0041937(z + 0.8229)(z − 0.6066)

(z − 1)(z − 0.9048)(z − 0.3679)
(44)

or

HCG(z) =
0.0033241(z + 0.6404)(z − 0.1434)

(z − 1)(z − 0.9048)(z − 0.01832)
(45)

whose sampled zeros can be canceled by the stable
poles.■

It should be noted that the above example is the ap-
plication of a special case of Corollary 1. The first-order
approximation of any discretization zero is expressed by
the linear formula of the coefficient a1 and b1, or equiv-
alently the summation of all continuous-time poles pi
(i = 1, · · · , n) and zeros qi (i = 1, · · · ,m), respectively,
namely

γ(τ) = λ+

(
c1

n∑
i=1

pi + c2

m∑
i=1

qi

)
τ +O(τ2)

(46)

where c1 and c2 are constants; we expect that the above-
mentioned filter C(s) is successfully applied to adjusting
general discretization zeros.

5. CONCLUSION
It is shown that the k-th order term of Taylor expan-

sion of sampled zeros is expressed only by the coeffi-
cients of the continuous-time system with the subscripts
restricted by k. This implies that the first-order approxi-
mation term of any discretization zero is determined by a
linear function of the summation of all poles and zeros of
the continuous-time system.
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