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Taylor series expansion for zeros of sampled-data
systems

Takuya Sogo, Member, IEEE, and Toshihito Utsuno

Abstract—The paper introduces key properties useful for the
computation of Taylor expansion of discretization zeros or single
intrinsic zeros of sampled-data systems. Furthermore, regularity
is shown to exist in the suffixes of the coefficients of the expansion
expressions, which implies that the sampling zeros or every
coefficient in the numerator of the transfer function of the
sampled-data systems is dominated by the coefficients of higher-
order terms in the numerator and denominator of the continuous-
time counterpart. Moreover, it is shown that the regularity
can reduce the calculation effort for expansions of higher-order
systems.

Index Terms—Sampling zero, Sampled-data system, Digital
control, Inverse system, Multivariate polynomial ring

I. INTRODUCTION

The linear dynamic system theory has been exhaustively
researched in the field for both continuous-time and discrete-
time systems. As most controllers for recent industrial applica-
tions are implemented as digital computer systems, discretiza-
tion based on the sample and hold operations is an indis-
pensable part of control systems. Therefore many interesting
discrete-time systems are necessarily related to continuous-
time systems. However, this relation is not as simplistic. Let
us consider a single-input-single-output linear time-invariant
system (Ac, Bc, C) with a transfer function

G(s) = C(sI −Ac)
−1Bc (1)

=
b0s

m + b1s
m−1 + · · ·+ bm−1s+ bm

sn + a1sn−1 + · · ·+ an−1s+ an
(2)

=
b0(s− q1) · · · (s− qm)

(s− p1)(s− p2) · · · (s− pn)
(3)

where p1, · · · , pn are assumed to be all distinct. (it can be
assumed that b0 = 1 without loss of generality when studying
zeros.) Then, the discrete-time system generated by the sam-
pler and a zero-order hold of sample time τ is represented by
the system matrices (A,B,C), where[

A B
0 1

]
= exp

([
Ac Bc

0 0

]
τ

)
=

∞∑
k=0

τk

k!

[
Ac Bc

0 0

]k
(4)

and the transfer function is

H(z) = C(zI −A)−1B =
N(z, τ)

D(z, τ)
(5)
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where

N(z, τ) =

∣∣∣∣ A− zI B
C 0

∣∣∣∣ (6)

=β1(τ)z
n−1 + β2(τ)z

n−2 + · · ·+ βn(τ) (7)
D(z, τ) =|A− zI| (8)

=zn + α1(τ)z
n−1 + · · ·+ αn−1(τ)z + αn(τ) (9)

It is well-known that H(z) is expressed as

H(z) =
Cτ {z − γ1(τ)} · · · {z − γn−1(τ)}
(z − exp(p1τ)) · · · (z − exp(pnτ))

(10)

[1], [2] (see (52) and (54) in Appendix A) While the
poles of the transfer function H(z) are simply denoted as
{exp(p1τ), · · · , exp(pnτ)}, there is no simple correspondence
between the n− 1 zeros of the transfer function H(z), called
sampling zeros, and the m continuous-time counterparts. Al-
though there is no general closed formula for sampling zeros,
the limit of the zeros, as the sample time τ tends to 0, is
known to be

lim
τ→0

H(z)

τn−m
=

b0(z − 1)mBn−m(z)

(n−m)!(z − 1)n
(11)

where Bn−m(z) represents the Euler-Frobenius or reciprocal
polynomials [2], [3], which have a zero at −1 when n − m
is even and zeros at λ and 1/λ, where λ is a negative real
number less than −1. This means that the discrete-time system
often has unstable zeros for a small sample time, even if the
continuous-time system has no unstable zeros. As the stability
of the zeros is of considerable importance for controller design
based on pole-zero cancellation, several studies have been
conducted to clarify the approximation formula for the zeros.
The m intrinsic zeros {γ1(τ), · · · , γm(τ)} that tend to 1 have
been shown to be asymptotically evaluated by the exponen-
tial functions of the continuous-time counterparts, namely,
{exp(q1τ), · · · , exp(qmτ)} [4]. Moreover, a Taylor expansion
of the single intrinsic zero with respect to the sample time
is presented up to the third-order term [5], [6]. A first-
order Taylor expansion of the n−m− 1 discretization zeros
{γm+1(τ), · · · , γn−1(τ)} that tend to the zeros of the polyno-
mial Bn−m(z) has been presented with a regular property [6].
To the best of the authors’ knowledge, no general formula for
higher-order Taylor expansion of discretization zeros is known
with a regular property. In the present paper, we introduce a
general formula for Taylor expansion of discretization zeros
with a regular property. For example, we consider the case
in which (n,m) = (3, 1) and assume b0 = 1. We obtain a
Taylor expansion of the discretization zeros γ2(τ) which will
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be discussed in Example 2 with 1:

γ2(τ) =− 1 + (a1 − b1)τ/3− (a21 − 2a1b1 + b21)τ
2/9

+ (a31 − 6a21b1 + 5b31 + 3a1a2 + 6a2b1

− 9a3)τ
3/270 + · · · (12)

As indicated by this example, each sum of the suffixes of
the coefficients ai and bj existing in the k-th-order term τk

is equal to k, e.g., the coefficient for τ2 in equation (12)
is a linear combination of a1a1, a1b1, and b1b1, the sum
of whose suffixes is equal to 2; the coefficient for τ3 is a
linear combination of a1a1a1, a1a1b1, a1a2, etc., the sum
of the suffixes of which is equal to 3. The present paper
shows that such regularity exists for Taylor expansions of any
discretization zeros, and therefore, the locations of those zeros
are dominated by the value of continuous-time parameters
with smaller suffixes. Moreover, for the same example we can
obtain a Taylor expansion of the intrinsic zero γ1(τ), which
will be discussed in Example 3 with 1:

γ1(τ) =1− b1τ + b21τ
2/2− b31τ

3/6 + b41τ
4/24

− (10b51 − 5a1b
4
1 + a21b

3
1 + 4a2b

3
1 − a1a2b

2
1

− 4a3b
2
1 + a1a3b1)τ

5/720 + · · · (13)

For this expression, the above-mentioned regularity on the
suffixes holds true. The present paper also shows that the same
regularity exists for Taylor expansion of any single intrinsic
zero, i.e. the case where m = 1. Finally, it is shown that
the regularity can reduce the effort required for the symbolic
calculation of the Taylor expansion.

II. TAYLOR EXPANSION OF ZEROS

A. Power series expansion of the numerator

In order to obtain the Taylor expansion of zeros, we prepare
a key property of the power series expansion of the numerator
N(z, τ) with respect to the sample time τ , which is denoted
by

N(z, τ) =

∞∑
k=0

Kk(z)τ
k (14)

The exact expressions Kk(z) for k = 0, · · · , kmax are sym-
bolically calculated through the following procedure:

Procedure 1:
1) Prepare the matrices (Ac, Bc, C) that consist of symbols

b0, b1, · · · , bm, a1, · · · , an, 1, and 0. (e.g. controllable or
observable canonical form1)

2) Symbolically calculate the power series (4) truncated at
k = kmax and let them be (A,B).

3) Calculate the matrix determinant (6) and order the
expression with respect to τk 2.

1Although any realization (Ac, Bc, C) is admissible, a sparse realization
such as controllable or observable canonical form is preferable from the
viewpoint of computational load for the following steps.

2In order to obtain K0(z),K1(z), · · · ,Kkmax (z) defined by the matrix
determinant (6), it suffices to truncate the power series (4) at k = kmax and
let them be (A,B) for the determinant (6). It should be noted, however, that
the computing of determinant based on such matrices (A,B) may partially
generate higher terms than τkmax . Eliminating such higher terms in the
computing process will save memory space.

The above procedure implies that Kk(z) is expressed by

Kk(z) =

n∑
i=1

m∑
j=0

fi,k,j(a1, · · · , an)bjzn−i (15)

where the polynomial fi,k,j(a1, · · · , an) of a1, · · · , an is
defined by

fi,k,j(a1, · · · , an)

=
∑

max(ν1+···+νn)=k

ci,k,j(ν1, · · · , νn) · aν1
1 · aν2

2 · · · · · aνn
n

(16)

where the sum is for n-tuples of nonnegative integers
(ν1, · · · , νn) satisfying the constraint max(ν1+ · · ·+νn) = k,
and the coefficients ci,k,j(ν1, · · · , νn) are rational constants.
As far as the above-mentioned definitions of the expres-
sions fi,k,j(a1, · · · , an) or Kk(z) are considered, these exact
expressions are expected to become more complicated as
the order k or n increases, because the number of com-
binations of the sum in equation (16) is

∑k
l=0(l + n −

1)!/ {l!(n− 1)!}. However, the terms that exist in the expres-
sions fi,k,j(a1, · · · , an) or Kk(z) are actually limited to a
fewer combinations:

Lemma 1: Summation (16) is limited to the combinations
of the n-tuples (ν1, · · · , νn) that satisfy

1 · ν1 + 2 · ν2 + · · ·+ n · νn = k − (n−m)− j (17)

Proof: See Appendix A.
Lemma 1 implies that there exists no combination of n-

tuples (ν1, · · · , νn) of nonnegative integers for summation
(16) for any nonnegative j when k < n−m:

Corollary 1: The numerator N(z, τ) of the transfer func-
tion H(z) is represented as

N(z, τ) =

∞∑
k=n−m

Kk(z)τ
k (18)

When k = n − m, only the n-tuple (ν1, · · · , νn) =
(0, · · · , 0) with j = 0 forms summation (16) and fi,k,j ≡ 0
for j > 0. Equivalently, Kn−m(z) is a polynomial of z with
constant coefficients multiplied by b0. These implications are
consistent with equation (11).

Example 1: Consider the case where (n,m) = (3, 1),
which was mentioned in Section I. Then, we estimate the
possible combinations for constraint (17) of Lemma 1 as
(ν1, ν2, ν3, j) = (1, 0, 0, 0) and (0, 0, 0, 1) for k = 3;
(ν1, ν2, ν3, j) = (2, 0, 0, 0), (1, 0, 0, 1) and (0, 1, 0, 0) for
k = 4; (ν1, ν2, ν3, j) = (3, 0, 0, 0), (2, 0, 0, 1), (1, 1, 0, 0),
(0, 1, 0, 1) and (0, 0, 1, 0) for k = 5. On the other hand,
through exact symbolic calculations based on Procedure 1 with
kmax = 5, we obtain N(z, τ) = β1(τ)z

2 + β2(τ)z + β3(τ),
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where

β1(τ) =b0τ
2/2− (a1b0 − b1) τ

3/3!

+
(
a1

2b0 − a1b1 − a2b0
)
τ4/4!

−
(
a1

3b0 − a1
2b1 − 2 a1a2b0

+a2b1 + a3b0) τ
5/5! + · · · (19)

β2(τ) =− (a1b0 − 4 b1) τ
3/3! +

(
2a21b0 − 8 a1b1

)
τ4/4!

−
(
3 a1

3b0 − 13 a1
2b1 − a1a2b0

+8 a2b1 − 2 a3b0) τ
5/5! + · · · (20)

β3(τ) =− b0τ
2/2 + (2 a1b0 + b1) τ

3/3!

−
(
3 a1

2b0 + 3 a1b1 − a2b0
)
τ4/4!

+
(
4 a1

3b0 + 6 a1
2b1 − 3 a1a2b0

−a2b1 − a3b0) τ
5/5! + · · · (21)

which means we have, for example, K0(z) = K1(z) = 0,

K2(z) =b0(z
2 − 1)/2 = b0(z − 1)B2(z)/2 (22)

K3(z) =
{
(a1b0 − b1)z

2 + (a1b0 − 4b1)z + (2a1b0 + b1)
}
/3!.

(23)

The results of the exact calculations are consistent with the
combinations anticipated by Lemma 1.

B. Taylor expansion of discretization zeros

By Corollary 1, we define Φ(z, τ) as Φ(z, τ) =
N(z, τ)/τn−m or

Φ(z, τ) = Kn−m(z) +Kn−m+1(z)τ +Kn−m+2(z)τ
2 + · · ·

(24)

for notational simplicity. Note that Kn−m(z) = b0(z −
1)mBn−m(z)/(n − m)! according to equation (11). Now,
we are ready to examine the Taylor expansion of
discretization zeros γi(τ) (i = n − m, · · · , n −
1) for the numerator N(z, τ), which are equivalent
to zeros for the function Φ(z, τ). The zeros of the
Euler-Frobenius polynomials Bk(z) for odd and even k
are denoted as {ζ1, · · · , ζ(k−1)/2, 1/ζ(k−1)/2, · · · , · · · , 1/ζ1}
and {ζ1, · · · , ζ(k−2)/2,−1, 1/ζ(k−2)/2, · · · , · · · , 1/ζ1}, re-
spectively, where ζi are negative real numbers satisfying
ζi < ζj < −1 (i < j) [3]. This implies that the discretization
zeros are single, negative, and real for a sufficiently small
sample time τ . This ensures that the function Φ(z, τ) satisfies

∂

∂z
Φ(z, τ)

∣∣∣∣
(z,τ)=(λ,0)

= K
(1)
n−m(λ) ̸= 0 (25)

where λ is the relevant zero of the Euler-Frobenius polynomial
Bn−m(z), i.e., Φ(λ, 0) = Kn−m(λ) = 0. By the implicit func-
tion theorem, there exists a class C∞ function z = γ(τ) for the
discretization zero, i.e., Φ(γ(τ), τ) = 0 for sufficiently small
τ . Let us denote the Taylor expansion of the discretization
zero γ(τ) with respect to τ as

γ(τ) = λ+

∞∑
k=1

Λkτ
k/k! (26)

Then, we can calculate an exact expression of
Λk = dk

dτk γ(τ)
∣∣∣
τ=0

from the expression of

the polynomial Kk(z) by utilizing the identities
Φ(γ(τ), τ) ≡ 0 and ∂i

∂τ iΦ(γ(τ), τ)
∣∣∣
τ=0

= 0,

where i = 1, 2, · · · . By ∂
∂τΦ(γ(τ), τ)

∣∣
τ=0

={
d
dτ γ(τ)

∂
∂zΦ(z, τ) +

∂
∂τΦ(z, τ)

}
τ=0,z=λ

= 0, we have

Λ1K
(1)
n−m(λ) +Kn−m+1(λ) = 0, which yields

Λ1 = −Kn−m+1(λ)/K
(1)
n−m(λ) (27)

By ∂2

∂τ2Φ(γ(τ), τ)
∣∣∣
τ=0

= 0, we have Λ2K
(1)
n−m(λ) +

Λ2
1K

(2)
n−m(λ) + 2Λ1K

(1)
n−m+1(λ) + 2Kn−m+2(λ) = 0, which

yields

Λ2 =−
{
Λ2
1K

(2)
n−m(λ) + 2Λ1K

(1)
n−m+1(λ)

+2Kn−m+2(λ)} /K(1)
n−m(λ) (28)

By repeating such calculations, we can recursively obtain the
following exact expression for Λk from {Λ1, · · · ,Λk−1} and
{Kn−m(z), · · · ,Kn−m+k(z)}:

Lemma 2: The coefficient Λk for the Taylor expansion (26)
of the discretization zero is calculated by

Λk =−
{
K

(1)
n−m(λ)

}−1

{k!Kn−m+k(λ)

+
∑

[mk−1]=k

k!

f(mk−1)
K

(m1+···+mk−1)
n−m (λ)

k−1∏
j=1

Λ
mj

j

+

k−1∑
l=1

(
k
l

) ∑
[mk−l]=k−l

(k − l)!

f(mk−l)
K

(m1+···+mk−l)
n−m+l (λ)

k−l∏
j=1

Λ
mj

j l!

 (29)

where
∑

[mi]=j indicates the summation for i-tuples of non-
negative integers mi = (m1, · · · ,mi) that satisfy

1 ·m1 + 2 ·m2 + · · ·+ i ·mi = j (30)

and f(mi) = m1!1!
m1m2!2!

m2 · · ·mi!i!
mi .

Proof: The left-hand side of the identity ∂k

∂τkΦ(γ(τ), τ) ≡
0 is expressed as

∞∑
i=0

k−1∑
l=0

{(
k
l

)(
dk−l

dτk−l
Kn−m+i(γ(τ))

)
i!

(i− l)!
δ
max(l,i)
i τ i−l

}
+

∞∑
i=0

{(
k
k

)
Kn−m+i(γ(τ))

i!

(i− k)!
δ
max(l,i)
i τ i−k

}
(31)

where

δ
max(l,i)
i =

{
1 (i ≥ l)
0 (i < l)

(32)

By Faà di Bruno’s formula for the generalized chain rule for
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higher derivatives [7], expression (31) yields

∞∑
i=0

k−1∑
l=0

( k
l

) ∑
[mk−l]=k−l

(k − l)!

f(mk−l)
K

(m1+···+mk−l)
n−m+i (γ(τ))

k−l∏
j=1

(
dj

dτ j
γ(τ)

)mj

 i!

(i− l)!
δ
max(l,i)
i τ i−l


+

(
k
k

)
Fk(γ(τ))

k!

(k − k)!
(33)

By setting τ = 0, expression (33) yields
k−1∑
l=1

(
k
l

) ∑
[mk−l]=k−l

(k − l)!

f(mk−l)
K

(m1+···+mk−l)
n−m+l (λ)

k−l∏
j=1

Λ
mj

j l!

+

(
k
0

) ∑
[mk]=k

k!

f(mk)
K

(m1+···+mk)
n−m (λ)

k∏
j=1

Λ
mj

j

+ k!Kn−m+k(λ) (34)

Note that in expression (34), Λk emerges only in the second
term, and the only combination for mk ̸= 0 that satisfies
[mk] = k is mk = (0, · · · , 0, 1). By separating the summation
into mk = (0, · · · , 0, 1) and (m1, · · · ,mk−1, 0), we obtain
k−1∑
l=1

(
k
l

) ∑
[mk−l]=k−l

(k − l)!

f(mk−l)
K

(m1+···+mk−l)
n−m+l (λ)

k−l∏
j=1

Λ
mj

j l!

+
∑

[mk−1]=k

k!

f(mk−1)
K

(m1+···+mk−1)
n−m (λ)

k−1∏
j=1

Λ
mj

j

+K
(1)
n−m(λ)Λk + k!Kn−m+k(λ) = 0 (35)

This completes the proof.
Lemma 2 ensures that calculating the exact expressions of

the equality ∂i

∂τ iΦ(γ(τ), τ)
∣∣∣
τ=0

= 0 for i = 1, · · · , k yields
an explicit expression for coefficient Λk.

From Lemma 1 and 2, we conclude that each coefficient Λk

of the Taylor expansion is expressed as a linear combination
of the monomials of a1, · · · , an and b0, b1, · · · , bm limited
by a number that is related to the order k. Without loss of
generality and for simplicity of expression, we assume that
b0 = 1.

Theorem 1: The coefficient Λk in the Taylor expansion of
discretization zeros (26) is expressed as

Λk =
∑

[ν]+[µ]=k

Ck(ν,µ)a
ν1
1 · · · aνn

n · bµ1

1 · · · bµm
m (36)

where Ck(ν,µ) is a real constant, and
∑

[ν]+[µ]=k indicates
the summation for the n-tuple ν = (ν1, · · · , νn) and m-tuple
µ = (µ1, · · · , µm) of nonnegative integers that satisfy

(1 · ν1 + · · ·+ n · νn) + (1 · µ1 + · · ·+m · µm) = k (37)

Proof: By Lemma 1, K(µ)
n−m+l(λ) is represented for any

µ as a linear combination of

aν1
1 · · · aνn

n bj (38)

where n + 1-tuple (ν1, · · · , νn, j) satisfies 1 · ν1 + · · · + n ·
νn + j = l. Since Λ1 = −Kn−m+1(λ)/K

(1)
n−m(λ), equation

(36) is satisfied for k = 1. We assume that equation (36) is
satisfied for Λj , where j = 1, · · · , k − 1. Then,

∏κ
j=1 Λ

mj

j is
expressed as a linear combination of aν1

1 · · · aνn
n · bµ1

1 · · · bµm
m ,

where [ν]+[µ] = 1·m1+· · ·+κ·mκ = [mκ]. Noting that the
summations in equation (35) are limited to the combinations
[mk−l] = k− l and [mk−1] = k, we obtain equation (36) for
Λk. By mathematical induction, we complete the proof.

Example 2: Next, consider the case where (n,m) = (3, 1),
as given in Example 1. There is one discretization zero γ2(τ)
that tends to the zero of B2(z) = z + 1, namely, λ = −1.
By Theorem 1, we estimate the possible combinations of
coefficients as a1 and b1 for Λ1; a21, a1b1 b21, a2 and b2 for Λ2;
a31, a21b1, a1a2, a2b1, a1b21, and a3 for Λ3. On the other hand,
by applying the calculation results of equations (22) and (23),
for example, to equations (27), (28), and (29), we obtain Taylor
expansion (12), which is consistent with the above estimation.

C. Taylor expansion for a single intrinsic zero

When m = 1 or there is only one intrinsic zero, the
intrinsic zero γ1(τ) (→ 1 as τ → 0) is single and real for
a sufficiently small sample time τ . This fact, applied based
on the implicit function theorem in Section II-B, implies that
the single intrinsic zero γ1(τ) can also be expressed by the
Taylor expansion (26) with λ = 1. A reasoning similar to the
one in Section II-B leads to the following Theorem on the
intrinsic zero, which corresponds to Lemma 2 and Theorem 1
on discretization zeros.

Theorem 2: When m = 1, the coefficient Λk for the Taylor
expansion (26) of the single intrinsic zero γ1(τ) is calculated
using formula (29) with λ = 1. The coefficient Λk is expressed
as formula (36) where the summation is restricted to the
combination that satisfies equation (37).

Example 3: Applying the calculation formula (29) to the
case (n,m) = (3, 1), we obtain the Taylor expansion as (13),
which is consistent with the above estimation. It should be
noted here that K6(z) and K7(z) are additionally prepared
for the Taylor expansion of γ1(τ) until k = 5. The fact that
the fifth term differs from that of the exponential function
exp(−b1τ) is consistent with the known result on the intrinsic
zero [6].

III. APPLICATIONS

The Taylor expansion (26) truncated at k = M of any
discretization zero or the single intrinsic zero is symbolically
calculated using formula (29) after calculation of the sym-
bolic expressions of K1(z), · · · ,Kn−m+M (z) by Procedure
1 presented at the beginning of Section II-A. Theorem 1 or 2
ensures that the effort needed for the symbolic calculation is
less than that directly expected from the calculation formula.
This result originated from Lemma 1, which ensures that the
number of the possible terms3 in the truncated expansion of
numerator N(z, τ) or {K1(z), · · · ,Kn−m+M (z)} is limited
to a number considerably smaller than the number that is
generally estimated by formulae (4) and (6) for Procedure

3The number of terms in Kk(z) is defined to be the number of terms that
are summed in equation (16) substituted into equation (15) [8].



TRANSACTIONS OF AUTOMATIC CONTROL, VOL. X, NO. X, JUNE 201X 5

1. Since the number of combinations of nonnegative integers
(ν1, · · · , νn) in the summation of equation (16) based on
the original definition is

∑k
l=0

(l+n−1)!
l!(n−1)! , in the worst case,

the number of the terms in {K1(z), · · · ,Kn−m+M (z)} is
estimated as

n(m+ 1)

n−m+M∑
k=1

k∑
l=0

(l + n− 1)!

l!(n− 1)!
(39)

However, Lemma 1 guarantees that a considerably lesser
number of terms than the worst-case number exist in the
expression.

Example 4: Next, we consider the example given as Exam-
ple 1, i.e., (n,m) = (3, 1). When we truncate the expansion
of the numerator N(z, τ) at k = n−m+M where M = 3,
the worst-case scenario with respect to the number of terms is
estimated by equation (39) to be 750. However, as shown in
Example 2, the number of possible combinations for equation
(17), where j = 0 and 1, is 0 for k = 0 or 1, 1 for k = 2, 2 for
k = 3, 3 for k = 4, and 5 for k = 5. The number of terms in
the truncated numerator N(z, τ) = β0(τ)z

2+β1(τ)z+β2(τ)
is limited to at most (1 + 2 + 3 + 5) × 3 = 33. The exact
calculation by Procedure 1 results in (19), (20), and (21) where
there exist 11 + 9 + 11 = 31 terms, which is consistent with
the above explanation.

Example 5: We consider the general transfer function (3),
where (n,m) = (8, 4) with b0 = 1, and calculate the symbolic
expressions of Taylor expansion (26) truncated at k = M =
2 of triple discretization zeros. For this purpose, we apply
formula (29) in Lemma 2 to the symbolic calculation of Λ1 and
Λ2 after preparing symbolic expressions of Kk(z), where k ≤
6 (= n−m+ 2), by Procedure 1 with kmax = 6. The worst-
case number of terms in these polynomials Kk(z) estimated
by (39) explodes to 200,200. Fortunately, Lemma 1 guarantees
that the number of terms remains at most 56 (= 8 × {1 +
(1 + 1) + (1 + 1 + 2)}) because combinations of nonnegative
integers (ν1, · · · , ν8) satisfying (17) are (0, · · · , 0) for k −
(n − m) − j = 0, (1, 0, · · · , 0) for k − (n − m) − j = 1,
and (2, 0, · · · , 0) or (0, 1, 0, · · · , 0) for k− (n−m)− j = 2.
However, since the computation of the determinant (6) at step
3 for Procedure 1 with (A,B) prepared at step 2 with kmax =
6 yields partial terms in unneeded Ki(z) (i = 7, 8, · · · ), the
total number of generated terms runs up to 26,227, which
should be reduced by some measure to prevent the useless
terms from being generated. In fact, one of such measures
are presented by Theorem 1 that implies that the objective
expressions of discretization zeros is written as

λ+ {C1(1)a1 + C1(2)b1} τ
+
{
C2(1)a

2
1 + C2(2)a1b1 + C2(3)b

2
1 + C2(4)a2

+C2(5)b2} τ2/2 (40)

where λ is one of the zeros of B4(z) = z3 + 11z2 + 11z + 1
and Ci(j) are real constants. Hence, ai or bi, where i ≥ 3, are
not needed for our purpose. By replacing unneeded symbols
{ai, bi|i ≥ 3} with 0 in the matrices (Ac, Bc, C) in advance of
step 2 for Procedure 1, we can reduce the effort required at step
2 and 3. The number of terms generated by the computation
after eliminating these unneeded symbols was found to be

424. The expressions to be applied to formula (29) to yield
Λ1 and Λ2 are chosen from 424 terms of the above-mentioned
calculation result as follows:

K4(z) =
1

4!

{
z7 + 7 z6 − 27 z5 + 19 z4

+19 z3 − 27 z2 + 7 z + 1
}

=
1

4!
(z + 1)(z2 + 10z + 1)(z − 1)4 (41)

K5(z) =
1

5!

{
(−a1 + b1)z

7 + (−18 a1 + 23 b1)z
6

+ (49 a1 − 9 b1)z
5 − 95 z4b1 + (−95 a1 + 95 b1)z

3

+(86 a1 + 9 b1)z
2 + (−17 a1 − 23 b1)z − 4 a1 − b1

}
(42)

K6(z) =
1

6!

{
(a1

2 − a1b1 − a2 + b2)z
7

+ (34 a1
2 − 49 a1b1 − 25 a2 + 55 b2)z

6

+ (−75 a1
2 − 45 a1b1 + 81 a2 + 189 b2)z

5

+ (−50 a1
2 + 335 a1b1 − 55 a2 − 245 b2)z

4

+ (235 a1
2 − 235 a1b1 − 55 a2 − 245 b2)z

3

+ (−186 a1
2 − 99 a1b1 + 81 a2 + 189 b2)z

2

+ (31 a1
2 + 89 a1b1 − 25 a2 + 55 b2)z

+10 a1
2 + 5 a1b1 − a2 + b2

}
(43)

Taylor expansions of the discretization zeros are yielded as
follows:

γ1(τ) =− 1 +
1

5
(a1 − b1)τ − 1

25
(a21 − 2a1b1 + b21)τ

2/2 + · · ·

(44)

γ2(τ) =− 5− 2
√
6 +

49 + 20
√
6

25 + 10
√
6
(a1 − b1)τ

+
1

100(5 + 2
√
6)3(3 +

√
6)

{

(−95050
√
6− 232824)a21 + (59285

√
6 + 145218)a1b1

+ (35765
√
6 + 87606)b21 + (130815

√
6 + 320430)a2

(−130815
√
6− 320430)b2

}
τ2/2 + · · · (45)

γ3(τ) =− 5 + 2
√
6 +

−49 + 20
√
6

−25 + 10
√
6
(a1 − b1)τ

+
1

100(−5 + 2
√
6)3(−3 +

√
6)

{

(95050
√
6− 232824)a21 + (−59285

√
6 + 145218)a1b1

+ (−35765
√
6 + 87606)b21

+ (−130815
√
6 + 320430)a2

(130815
√
6− 320430)b2

}
τ2/2 + · · · (46)

Since the total number of terms in expressions (41), (42) and
(43) is 55, the above-mentioned computation with elimination
of unneeded symbols has still yielded 424 − 55 = 369
unneeded terms, which consist only of {a1, a2, b0, b1, b2} but
should be parts of unneeded Ki(z) (i ≥ 7). Note, however,
that the number of unneeded terms avoided by the elimination
of unneeded symbols in advance is 26,227 − 424 = 25,803,
which is much larger than 424 − 55 = 369. Moreover, we
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note that preventing such 25,803 terms from being generated
saves much computing time. Table I shows a comparison of
computing time4 used for determinant computation at Step 3
for Procedure 1 with the following different realizations.

Case 1: Controllable canonical form (Āc, B̄c, C̄)
which is one of the most sparse matrix realization.

Case 2: Similar-transformed controllable canoni-
cal form (Ac, Bc, C) = (T−1

2 ĀcT2, T
−1
2 B̄c, C̄T2)

by

T2 =



1 0 0 0 0 1 0 1
1 1 0 0 1 0 0 0
0 1 0 0 1 0 1 0
0 0 1 0 1 1 0 0
0 1 0 1 0 0 0 1
1 0 1 0 0 1 0 0
0 0 0 1 0 0 1 0
0 0 1 1 0 0 0 1


(47)

Every element in (Ac, Bc, C) is non-zero.

case 1 case 2
without elimination 8.441 5.3718× 105

(26,227 terms generated)
with elimination 0.017 1.635

(424 terms generated)
TABLE I

COMPUTING TIME USED FOR DETERMINANT CALCULATION

Even for the sparse matrix realization (case 1), the computation
time is reduced to around 1/500. The above results demon-
strate the advantage of using Theorem 1 for computation of
Taylor expansion when the order n or m of the system is large.

IV. CONCLUSION

The paper introduces key properties useful for the compu-
tation of Taylor series expansion of any discretization zero
or single intrinsic zero with regularity of the suffixes of the
coefficient. The regularity is shown to reduce the calculation
effort for higher-order systems. The regularity also indicates
that the discretization zeros, single intrinsic zero, or every
coefficient in the numerator of the transfer function of the
sampled-data systems are dominated by the coefficients for
higher-order term sk in the numerator and denominator of the
continuous-time counterpart.

4CPU time [sec] by symbolic computing software Maple on Mac Pro
3.5GHz 6-Core Intel Xeon E5 with 16GB memory

APPENDIX A
PROOF OF LEMMA 1

First, we prepare some equations to be used for proof of
Lemma 1. By equations (2) and (3), we have

(−1)1a1 = p1 + · · ·+ pn (48)

(−1)2a2 = p1p2 + · · ·+ pn−1pn (49)
...

(−1)jaj =
∑

1≤i1<···<ij≤n

pi1pi2 · · · pij (50)

...
(−1)nan = p1p2 · · · pn (51)

The sum in equation (50) is for j-tuples of integers (i1, · · · , ij)
that satisfy 1 ≤ i1 < · · · < ij ≤ n Note that, from
the viewpoint of the multivariate polynomial of p1, · · · , pn,
equations (48) through (51) are referred to as elementary
symmetric polynomials [8]. In the following, we denote the j-
th elementary symmetric polynomial defined by (50) of the n
variables {p1, · · · , pn} as σn,j({p1, · · · , pn}). Note here that
the total degree of polynomial σn,j({p1, · · · , pn}) = (−1)jaj
denoted by deg(σn,j) = deg(aj) is equal to the suffix j.

Here, using the expression
G(s)

s
=

r0
s

+
r1

s− p1
+ · · ·+ rn

s− pn
(52)

we prepare another expression of the transfer function [1]

H(z) = (1− z−1)Z
[
G(s)

s

]
(53)

=
z − 1

z

{
r0z

z − exp(p0τ)
+ · · ·+ rnz

z − exp(pnτ)

}
(54)

where Z[·] indicates z-transform after inverse Laplace trans-
form and sampling; we define p0 = 0. From equations (2) and
(52), we obtain the equations

(−1)j−(n−m)bj−(n−m) =

n∑
l=0

rlσn,j({p0, p1, · · · , pn}\{pl})

(55)

where j = n − m, · · · , n, and the set {p0, p1, · · · , pn}\{pl}
indicates the set of n+1 variables {p0, p1, · · · , pn} excluding
{pl}, which is a set of n variables. For the sake of convenience,
in the following discussions we define bj−(n−m) = 0 for j =
1, · · · , (n−m)− 1. From equations (7) and (54), we have

(−1)jβj =

n∑
l=0

rlσn,j({exp(p0τ), · · · , exp(pnτ)}\{exp(plτ)})

(56)
Noting that

σn,j({exp(p1τ), · · · , exp(pnτ)})

=
∑

1≤i1<···<ij≤n

exp((pi1 + · · ·+ pij )τ) (57)

=

∞∑
k=0

τk

k!

∑
1≤i1<···<ij≤n

(pi1 + · · ·+ pij )
k (58)
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equation (56) yields

(−1)jβj =

∞∑
k=0

τk

k!

n∑
l=0

rlSj,k({p0, p1, · · · , pn}\{pl}) (59)

where

Sj,k({p0, p1, · · · , pn}\{pl}) =
(̸=l)∑

0≤i1<···<ij≤n

(pi1 + · · ·+ pij )
k

(60)

The sum
∑( ̸=l)

0≤i1<···<ij≤n is the sum of j-tuples of integers
(i1, · · · , ij) that satisfy i1 ̸= l, · · · , in ̸= l and 0 ≤ i1 < · · · <
ij ≤ n. Note that the multivariate polynomial Sj,k previously
defined is a symmetric polynomial, which is identical for every
possible permutation of the variables [8]. In order to express
equation (59) in terms of equations (48) through (55), we note
the following:

Proposition 1: [8] Every symmetric polynomial of n vari-
ables can be written uniquely as a polynomial of the elemen-
tary symmetric polynomials of the n variables.
By this proposition, we have

Sj,k({p0, p1, · · · , pn}\{pl})

=
∑

(µ1,··· ,µn)

cj,k(µ1, · · · , µn)σ
µ1

n,1,l · · ·σ
µn

n,n,l (61)

where the sum is for n-tuples of nonnegative inte-
gers (µ1, · · · , µn), cj,l(µ1, · · · , µn) are constants, and
σn,1,l, . . . , σn,n,l indicate the elementary symmetric polyno-
mials of n variables {p0, p1, · · · , pn}\{pl}. Next, we note that
the expressions of the elementary symmetric polynomial, i.e.,
(48), · · · , (51) yield the following identities:

σn+1,1 = σn,1,l + pl (62)
σn+1,2 = σn,2,l + plσn,1,l (63)

...
σn+1,n = σn,n,l + plσn,n−1,l (64)

σn+1,n+1 = plσn,n,l (65)

Using these identities, we prepare a key lemma:
Lemma 3: Any monomial of elementary symmetric poly-

nomials σµ1

n,1,l · · ·σ
µn

n,n,l of n variables {p0, p1, · · · , pn}\{pl}
can be written for any l ∈ {0, · · · , n} by using the elementary
symmetric polynomials {σn+1,1, · · · , σn+1,n+1} of the n+ 1
variables, {p0, p1, · · · , pn} excluding no elements as

σµ1

n,1,l · · ·σ
µn

n,n,l

=

n∑
η=1

σn,η,l

∑
(ν1,··· ,νn+1)

cη(ν1, · · · , νn+1)σ
ν1
n+1,1 · · ·σ

νn+1

n+1,n+1

(66)

where cη(ν1, · · · , νn+1) are constants.

Proof: We prepare the following identities:

σn,k,l =

k∑
i=0

(−1)iσn+1,k−ip
i
l (k = 1, · · · , n) (67)

pn+1
l =(−1)n

n∑
i=0

(−1)iσn+1,n+1−ip
i
l (68)

pkl =(−1)k

{
σn,k,l −

k−1∑
i=0

(−1)iσn+1,k−ip
i
l

}
(k = 1, · · · , n) (69)

where we define σn+1,0 = 1 for expressive simplicity. Identity
(67) is derived by recursive substitution regarding identities
(62) through (64) such as the substitution of equation (62)
into equation (63) to eliminate the term σn,1,l. Identity (68)
is derived by substituting identity (67) and σn+1,0 = 1
into identity (65). Identity (69) is equivalent to identity (67)
rewritten using σn+1,0 = 1. Next, we apply identities (67),
(68), and (69) to the left-hand side of equation (66), which
is to be proven. First, we use identity (67) to eliminate
σn,1,l, · · · , σn,n,l and then substitute identity (68) repeatedly
in order to decrease the order of pl until the maximum order
becomes less than n+ 1:

σµ1

n,1,l · · ·σ
µn

n,n,l

=

n∑
k=1

 ∑
(ν1,··· ,νn+1)

Ck(ν1, · · · , νn+1)σ
ν1
n+1,1 · · ·σ

νn+1

n+1,n+1

 pkl

(70)

where
∑

(ν1,··· ,νn+1)
indicates the summation for n+1-tuples

of nonnegative integers (ν1, · · · , νn+1) and Ck(ν1, · · · , νn+1)
are integer constants. Substituting identity (69) with k = n into
equation (70), we obtain

σµ1

n,1,l · · ·σ
µn

n,n,l

=

 ∑
(ν1,··· ,νn+1)

Cn(ν1, · · · , νn+1)σ
ν1
n+1,1 · · ·σ

νn+1

n+1,n+1


(−1)σn,n,l +

n−1∑
k=1 ∑

(ν1,··· ,νn+1)

C̄k(ν1, · · · , νn+1)σ
ν1
n+1,1 · · ·σ

νn+1

n+1,n+1

 pkl

(71)

where C̄k(ν1, · · · , νn+1) are the integer constants calculated
from constants Ck(ν1, · · · , νn+1) with k = n, · · · , 1. Repeat-
ing the substitution of identity (69) with k = n − 1, · · · , 1
sequentially, we eliminate pn−1

l , · · · , p1l and establish Lemma
3.

Remark 1: Note that Lemma 3 holds independently of the
above-mentioned assumption, i.e., p0 = 0, and holds identi-
cally for any values of (p0, · · · , pn). Moreover, the summation
for n+1-tuples (ν1, · · · , νn+1) in equation (66) is independent
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of suffix l of the excluded variable pl. Hence, we have
n∑

l=0

rlσ
µ1

n,1,l · · ·σ
µn

n,n,l =

n∑
η=1

∑
(ν1,··· ,νn+1)

cη(ν1, · · · , νn+1)σ
ν1
n+1,1 · · ·σ

νn+1

n+1,n+1

n∑
l=0

rlσn,η,l (72)

where we changed the order of summation, making that over
l innermost.

Now, we prove Lemma 1. By equations (61) and (72),
equation (59) yields

(−1)jβj =

∞∑
k=0

τk

k!

∑
cj,k

n∑
η=1

∑
(ν1,··· ,νn+1)

cησ
ν1
n+1,1 · · ·σ

νn+1

n+1,n+1

n∑
l=0

rlσn,η,l (73)

Since we defined p0 = 0, we have σn+1,i({p0, p1, · · · , pn}) =
σn,i({p1, · · · , pn}) for i = 1, · · · , n and σn+1,n+1 = 0. By
substituting equations (48) through (55) into equation (73), we
obtain

(−1)jβj =

∞∑
k=0

τk

k!

∑
cj,k

n∑
η=1

∑
(ν1,··· ,νn+1)

c̄η{(−1)1a1}ν1 · · · {(−1)nan}νn(−1)η−(n−m)bη−(n−m)

(74)

where c̄η(k, ν1, · · · , νn) = cη(k, ν1, · · · , νn, 0). Expression
(74) for βj is equivalent to that obtained by comparing
equations (14), (15), and (16) with the definition given in
equation (7).

By comparing the terms of τk in the right-hand sides of
equations (74) and (59), we obtain

n∑
l=0

rlSj,k({p0, p1, · · · , pn}\{pl}) = 0 (75)

for k = 0, · · · , n − m − 1 because bη−(n−m) = 0 for η =
1, · · · , (n−m)−1 and deg (

∑n
l=0 rlσn,η,l) = η, which implies

that c̄η = 0 for η > deg(Sj,k) = k, where deg indicates
the total degree in terms of the multivariate polynomial of
{p0, p1, · · · , pn}. Moreover, we obtain

deg

(
n∑

l=0

rlSj,k({p0, p1, · · · , pn}\{pl})

)
=deg(bη−(n−m)) + deg(a1) · ν1 + · · ·+ deg(an) · νn (76)

for k ≥ n + m. Since we have deg(bj−(n−m)) = j and
deg(aj) = j from equations (55) and (50), we complete the
proof of Lemma 1.
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